基于Googlenet深度学习网络的信号调制类型识别matlab仿真

news/2025/2/19 8:50:31/

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 深度学习与卷积神经网络

4.2 数据预处理

4.3 GoogLeNet结构

4.4 分类器

5.算法完整程序工程


1.算法运行效果图预览

 

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

..............................................................................
% 获取特征学习器和分类器的层名称
Feature_Learner   = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;
% 获取类别数量
Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的特征学习器和分类器层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...'Name', 'Coal Feature Learner', ...'WeightLearnRateFactor', 10, ...'BiasLearnRateFactor', 10);New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 构建新的网络架构
Network_Architecture = layerGraph(net);New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);
% 分析新的网络结构
analyzeNetwork(New_Network)% 设置训练选项
maxEpochs = 20;
Minibatch_Size = 8;
Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);
Training_Options = trainingOptions('sgdm', ...'MiniBatchSize', Minibatch_Size, ...'MaxEpochs', maxEpochs, ...'InitialLearnRate', 1e-3, ...'Shuffle', 'every-epoch', ...'ValidationData', Resized_Validation_Dataset, ...'ValidationFrequency', Validation_Frequency, ...'Verbose', false, ...'Plots', 'training-progress');
% 训练网络
net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);
% 保存训练好的模型
save gnet.mat   
0045

4.算法理论概述

       信号调制类型识别是在无线通信和无线电频谱监测中的一个重要任务。不同信号调制类型具有不同的频谱特征,深度学习方法在信号调制类型识别中取得了显著的成果。

4.1 深度学习与卷积神经网络

深度学习是一种机器学习方法,卷积神经网络(CNN)是深度学习的重要分支。CNN通过多层卷积和池化层来学习输入数据的特征表示。GoogLeNet是一种深度卷积神经网络结构,其主要创新在于使用了多个并行的卷积层和1x1卷积核来提高网络的效率和准确性。

4.2 数据预处理

首先,采集信号数据并对其进行预处理。信号数据通常以复数形式表示,包括实部和虚部。预处理可能包括归一化、去噪等步骤。

4.3 GoogLeNet结构

GoogLeNet网络结构使用了Inception模块,每个模块包括不同大小的卷积核和池化层,以捕捉多尺度的特征。每个Inception模块的输出被串联在一起,形成网络的输出。

GoogLenet网络亮点

1.引入了Inception结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数)

Inception结构

在这里插入图片描述

4.4 分类器

       在网络的顶部,添加一个全连接层作为分类器,将特征映射到各个信号调制类型的概率分布。通常使用softmax函数来获得不同类别的概率。

5.算法完整程序工程

OOOOO

OOO

O


http://www.ppmy.cn/news/1037284.html

相关文章

GaussDB 实验篇+openGauss的4种1级分区案例

✔ 范围分区/range分区 -- 创建表 drop table if exists zzt.par_range; create table if not exists zzt.par_range (empno integer,ename char(10),job char(9),mgr integer(4),hiredate date,sal numeric(7,2),comm numeric(7,2),deptno integer,constraint pk_par_emp pri…

VB+SQL银行设备管理系统设计与实现

摘要 随着银行卡的普及,很多地方安装了大量的存款机、取款机和POS机等银行自助设备。银行设备管理系统可以有效的记录银行设备的安装和使用情况,规范对自助设备的管理,从而为用户提供更加稳定和优质的服务。 本文介绍了银行设备管理系统的设计和开发过程,详细阐述了整个应…

什么是LLM大语言模型?

什么是LLM大语言模型? 大语言模型(英文:Large Language Model,缩写LLM),也称大型语言模型,是一种人工智能模型,旨在理解和生成人类语言。它们在大量的文本数据上进行训练&#xff0…

java面试基础 -- ArrayList 和 LinkedList有什么区别

目录 基本介绍 有什么不同?? ArrayList的扩容机制 ArrayLIst的基本使用 基本介绍 还记得我们的java集合框架吗, 我们来复习一下, 如图: 可以看出来 ArrayList和LinkedList 都是具体类, 他们都是接口List的实现类. 但是他们底层的逻辑是不同的, 相信学过这个的应该大概有…

气象监测站:用科技感知气象变化

气象监测站是利用科学技术感知当地小气候变化情况的气象观测仪器,可用于农业、林业、养殖业、畜牧业、环境保护、工业等多个领域,提高对环境数据的利用率,促进产业效能不断提升。 气象监测站主要由气象传感器、数据传输系统、电源系统、支架…

vue3 样式穿透:deep不生效

初学vue3&#xff0c;今天需要修改el-input组件的属性&#xff08;去掉border和文字居右&#xff09; 网上搜了一下&#xff0c;大致都是采用:deep 样式穿透来修改el-input的属性 <div class"input-container"><el-input placeholder"请输入111&qu…

Wordcloud | 风中有朵雨做的‘词云‘哦!~

1写在前面 今天可算把key搞好了&#xff0c;不得不说&#x1f3e5;里手握生杀大权的人&#xff0c;都在自己的能力范围内尽可能的难为你。&#x1f602; 我等小大夫也是很无奈&#xff0c;毕竟奔波霸、霸波奔是要去抓唐僧的。 &#x1f910; 好吧&#xff0c;今天是词云&#x…