Transformer(二)(VIT,TNT)(基于视觉CV)

news/2025/2/12 4:11:24/

目录

1.视觉中的Attention

 2.VIT框架(图像分类,不需要decoder)

2.1整体框架

2.2.CNN和Transformer遇到的问题

2.3.1CNN

2.3.2Transformer

2.3.3二者对比

2.4.公式理解

3TNT

参考文献


1.视觉中的Attention

      对于人类而言看到一幅图可以立即区分背景和主体,我们希望计算机也可以清楚区分背景和主体,这样就可以专注在主体上提取特征。 

 2.VIT框架(图像分类,不需要decoder)

2.1整体框架

      如下图所示,transformer框架需要输入为序列形式,但图像是高维的,所以首先要对图像预处理,简单理解,假设下图是一个30*30*3的输入,将其分为9块,每块大小为10*10*3,再对其做一个卷积处理,变成300*1。 

      同样图像处理也要考虑到位置编码(Position Embedding),有两种方式,一种是直接再一维空间用1,2,3,4....,一种是在二维空间用(1,1),(1,2)...。一维,二维对结果影响不大(仅图像分类)。但编码方式,也是一个创新点。

      下图框架为分类任务,多加了一部分,简单理解,目的在于整合所有输入量,最后用其进行分类

       和文本处理,区别在于多了一个图像的数据处理,要将高维变成序列形式,

       最后说下下图右的框架,Norm是归一化处理,Multi-Head Attention是多头注意力机制,MLP是全连接层。

2.2.CNN和Transformer遇到的问题

2.3.1CNN

      以Resnet50为例,首先回忆一下感受野的概念,即当前层神经元(特征图)可以看到的原图的区域,我们假设conv1,conv6,conv11,conv16,此时我们想做一个分类任务,区分这个女生好不好看,对于conv1它的感受野为红色小框,显然特征过小,conv4为绿色小框,此时已经能看到眼睛,但还是不足以做出判断,conv11为黄色框,此时已经能看到较多的局部特征,但还不足以准确判断,最后来到conv16,此时足以看到整个脸,可以进行判别,但我们发现想要得到一个全局信息这个过程需要多层嵌套才能实现,比较麻烦。 

      对比一下,CNN通常第一层卷积用3*3的核也就是说只能看到原图3*3大小的区域,可能要最后一层才能看到全局,而transformer可以实现第一层就看到全局。

2.3.2Transformer

transformer对于CNN需要极大数据集才能得到好的结果。

2.3.3二者对比

2.4.公式理解

      E为全连接层,目的是对输入数据进行预处理,就是将高维图像变成序列形式,假设P*P=196,就是图像分割的块数,像上面将图分为9块的意思,C=256是每一块含有的向量,D=512,目的是将256映射成512,N=196是位置信息编码,+1是因为图像分类任务要多一个输入,LN是归一化处理,MSA是多头自注意力机制,MLP是全连接层。类似于残差链接 。可以对比流程图理解。

3TNT

假设VIT每一个patch是16*16.TNT希望这个patch更小。

     

      基于这个思想,TNT将数据预处理,分为外部和内部两块,外部和VIT一样,内部就是对外部的信息再次细分,比方说外部一个patch是16*16,内部就用4*4的块进行分割,下面超像素的概念就是不想按照1*1大小进行分割,多选择几个像素点分割。

      在实际应用中,如下图所示,将一个图分为4块(外部),VIT中是直接预处理后变成一个4维向量输入了,而在TNT中,假设第3块(外部),进行了一个内部分割,然后重构后也变成一个4维向量,将其加入外部的4维向量。同样内外部都做位置编码时效果最好。

      从可视化角度看,TNT在不同层下得到的结果更好,从T-SNE看,TNT更集中,效果更好。

参考文献

1.【VIT算法模型源码解读】1-项目配置说明1.mp4_哔哩哔哩_bilibili


http://www.ppmy.cn/news/1025495.html

相关文章

STM32CubeMX之freeRTOS事件组

当有多个判断,才会执行的时候,就会有事件组 事件组就是24个标志位的组合,或操作或者与操作就可以操作其 例如发射导弹 需要很多人都同意才能发送 V1版本无法自动添加事件组 这里手动创建事件组 这里是基本的使用 置1操作 这里进行事件组的…

C# 数据类型

C# 数据类型 一、整数类型(Integral Types)1.sbyte2.byte3.short4.ushort5.int6.uint7.long8.ulong 二、浮点数类型(Floating-Point Types)1.float2.double3.decimal 三、字符类型(Character Type)1.char 四…

UNIX网络编程——TCP协议API 基础demo服务器代码

目录 一.TCP客户端API 1.创建套接字 2.connect连接服务器​编辑 3.send发送信息 4.recv接受信息 5.close 二.TCP服务器API 1.socket创建tcp套接字(监听套接字) 2.bind给服务器套接字绑定port,ip地址信息 3.listen监听并创建连接队列 4.accept提取客户端的连接 5.send,r…

最新版本的Anaconda环境配置、Cuda、cuDNN以及pytorch环境一键式配置流程

本教程是最新的深度学习入门环境配置教程,跟着本教程可以帮你解决入门深度学习之前的环境配置问题。同时,本教程拒绝琐碎,大部分以图例形式进行教程。这里我们安装的都是最新版本~ 文章目录 一、Anaconda的安装1.1 下载1.2 安装1.3 环境配置…

跟我学c++中级篇——模板的模板参数再谈

一、背景 在前面分析过模板的模板参数,当时对类模板中的模板参数进行了形式上的重点说明,应用也举了一个很简单的例子。现在分析一个例程的演进并和实际相结合,看看如何应用。这个例程就是模板参数中要进行某个函数的功能测试,所…

腾讯云服务器轻量和CVM有什么区别?

腾讯云轻量服务器和云服务器有什么区别?为什么轻量应用服务器价格便宜?是因为轻量服务器CPU内存性能比云服务器CVM性能差吗?轻量应用服务器适合中小企业或个人开发者搭建企业官网、博客论坛、微信小程序或开发测试环境,云服务器CV…

【C++11】lambda表达式 | 包装器

文章目录 一.lambda表达式1.lambda表达式概念2.lambda表达式语法3.lambda表达式交换两个数4.lambda表达式底层原理 二.包装器1.function包装器①function包装器介绍②function包装器统一类型③function包装器的意义 2.bind包装器①bind包装器介绍②bind包装器绑定固定参数③bin…

PolarDB-X 针对跑批场景的思考和实践

背景 金融行业和运营商系统,业务除了在线联机查询外,同时有离线跑批处理,跑批场景比较注重吞吐量,同时基于数据库场景有一定的使用惯性,比如直连MySQL分库分表的存储节点做本地化跑批、以及基于Oracle/DB2等数据库做E…