面部表情识别4:C++实现表情识别(含源码,可实时检测)

news/2025/2/28 3:05:07/

面部表情识别4:C++实现表情识别(含源码,可实时检测)

目录

面部表情识别4:C++实现表情识别(含源码,可实时检测)

 1.面部表情识别方法

2.人脸检测方法

3.面部表情识别模型(Python)

(1) 面部表情识别模型的训练

(2) 将Pytorch模型转换ONNX模型

(3) 将ONNX模型转换为TNN模型

4.面部表情识别模型C/C++部署

(1)项目结构

 (2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

(3)部署TNN模型

(4)CMake配置

(5)main源码

(6)源码编译和运行

(7)Demo测试效果 

5.项目源码下载


这是项目《面部表情识别》系列之《C++实现表情识别(含源码,可实时检测)》,主要分享将Python训练后的面部表情识别模型(mobilenet_v2)部署到C/C++平台。我们将开发一个简易的、可实时运行的面部表情识别的C/C++ Demo。准确率还挺高的,采用轻量级mobilenet_v2模型的面部表情识别准确率也可以高达94.72%左右,基本满足业务性能需求。C/C ++版本表情识别模型推理支持CPU和GPU加速,开启GPU(OpenCL)加速,可以达到实时的检测识别效果,基本满足业务的性能需求。

先展示一下,C/C++版本的面部表情识别Demo效果(不同表情用不同的颜色框标注了)

尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/129467023


 更多项目《面部表情识别》系列文章请参考:

  1. 面部表情识别1:表情识别数据集(含下载链接)
  2. 面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)
  3. 面部表情识别3:Android实现表情识别(含源码,可实时检测)
  4. 面部表情识别4:C++实现表情识别(含源码,可实时检测)


 1.面部表情识别方法

面部表情识别方法有多种实现方案,这里采用最常规的方法:基于人脸检测+面部表情分类识别方法,即先采用通用的人脸检测模型,进行人脸检测,然后裁剪人脸区域,再训练一个面部表情分类器,完成对面部表情识别;

这样做的好处,是可以利用现有的人脸检测模型,而无需重新训练人脸检测模型,可减少人工标注成本低;而人脸数据相对而言比较容易采集,分类模型可针对性进行优化。


2.人脸检测方法

本项目人脸检测训练代码请参考:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 

这是一个基于SSD改进且轻量化后人脸检测模型,很slim,整个模型仅仅1.7M左右,在普通Android手机都可以实时检测。人脸检测方法在网上有一大堆现成的方法可以使用,完全可以不局限我这个方法。

​​​

关于人脸检测的方法,可以参考我的另一篇博客:

行人检测和人脸检测和人脸关键点检测(C++/Android源码)


3.面部表情识别模型(Python)

(1) 面部表情识别模型的训练

本篇博文不含python版本的面部表情模型以及相关训练代码,关于面部表情识别模型的训练方法,请参考本人另一篇博文《面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)》:面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)

(2) 将Pytorch模型转换ONNX模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署。部署流程可分为四步:训练模型->将模型转换ONNX模型->将ONNX模型转换为TNN模型->C/C++部署TNN模型。

训练好Pytorch模型后,我们需要先将模型转换为ONNX模型,以便后续模型部署。

  • 原始项目提供转换脚本,你只需要修改model_file为你模型路径即可
  •  convert_torch_to_onnx.py实现将Pytorch模型转换ONNX模型的脚本
python libs/convert/convert_torch_to_onnx.py
"""
This code is used to convert the pytorch model into an onnx format model.
"""
import sys
import ossys.path.insert(0, os.getcwd())
import torch.onnx
import onnx
from classifier.models.build_models import get_models
from basetrainer.utils import torch_toolsdef build_net(model_file, net_type, input_size, num_classes, width_mult=1.0):""":param model_file: 模型文件:param net_type: 模型名称:param input_size: 模型输入大小:param num_classes: 类别数:param width_mult::return:"""model = get_models(net_type, input_size, num_classes, width_mult=width_mult, is_train=False, pretrained=False)state_dict = torch_tools.load_state_dict(model_file)model.load_state_dict(state_dict)return modeldef convert2onnx(model_file, net_type, input_size, num_classes, width_mult=1.0, device="cpu", onnx_type="default"):model = build_net(model_file, net_type, input_size, num_classes, width_mult=width_mult)model = model.to(device)model.eval()model_name = os.path.basename(model_file)[:-len(".pth")] + ".onnx"onnx_path = os.path.join(os.path.dirname(model_file), model_name)# dummy_input = torch.randn(1, 3, 240, 320).to("cuda")dummy_input = torch.randn(1, 3, input_size[1], input_size[0]).to(device)# torch.onnx.export(model, dummy_input, onnx_path, verbose=False,#                   input_names=['input'],output_names=['scores', 'boxes'])do_constant_folding = Trueif onnx_type == "default":torch.onnx.export(model, dummy_input, onnx_path, verbose=False, export_params=True,do_constant_folding=do_constant_folding,input_names=['input'],output_names=['output'])elif onnx_type == "det":torch.onnx.export(model,dummy_input,onnx_path,do_constant_folding=do_constant_folding,export_params=True,verbose=False,input_names=['input'],output_names=['scores', 'boxes', 'ldmks'])elif onnx_type == "kp":torch.onnx.export(model,dummy_input,onnx_path,do_constant_folding=do_constant_folding,export_params=True,verbose=False,input_names=['input'],output_names=['output'])onnx_model = onnx.load(onnx_path)onnx.checker.check_model(onnx_model)print(onnx_path)if __name__ == "__main__":net_type = "mobilenet_v2"width_mult = 1.0input_size = [128, 128]num_classes = 2model_file = "work_space/mobilenet_v2_1.0_CrossEntropyLoss/model/best_model_022_98.1848.pth"convert2onnx(model_file, net_type, input_size, num_classes, width_mult=width_mult)

(3) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

​​​

4.面部表情识别模型C/C++部署

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置好开发环境。

(1)项目结构

 (2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译

  • 安装OpenCV:图像处理

图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理

安装教程:Ubuntu18.04安装opencv和opencv_contrib_AI吃大瓜的博客-CSDN博客_opencv opencv_contrib ubuntu

OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装

  • 安装OpenCL:模型加速

 安装教程:Ubuntu16.04 安装OpenCV&OpenCL_xiaozl_284的博客-CSDN博客_clinfo源码下载

OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢

  • base-utils:C++库

GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了)

base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法

  • TNN:模型推理

GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了)

由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。

(3)部署TNN模型

项目实现了C/C++版本的车牌检测和车牌识别,车牌检测模型YOLOv5和车牌识别模型PlateNet,模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通设备即可达到实时处理。

如果你想在这个 Demo部署你自己训练的车牌检测模型YOLOv5和车牌识别模型PlateNet,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。

(4)CMake配置

这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译

cmake_minimum_required(VERSION 3.5)
project(Detector)add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
#set(CMAKE_CXX_FLAGS_RELEASE "-O2 -DNDEBUG")
#set(CMAKE_CXX_FLAGS_DEBUG "-g")if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)# -DCMAKE_BUILD_TYPE=Debug# -DCMAKE_BUILD_TYPE=Releasemessage(STATUS "No build type selected, default to Release")set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
endif ()# opencv set
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS} ./src/)
#MESSAGE(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")# base_utils
set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
include_directories(${BASE_ROOT}/base_utils/include)
include_directories(${BASE_ROOT}/base_utils/src)
MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")# TNN set
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake buil ds it for you.
# Gradle automatically packages shared libraries with your APK.
# build for platform
# set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
if (CMAKE_SYSTEM_NAME MATCHES "Android")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread#set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DTNN_ARM_ENABLE)              # for Android CPUadd_definitions(-DDEBUG_ANDROID_ON)            # for Android Logadd_definitions(-DPLATFORM_ANDROID)
elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Threadadd_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DDEBUG_ON)                    # for WIN/Linux Logadd_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Logadd_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV showadd_definitions(-DPLATFORM_LINUX)
elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Threadadd_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPUadd_definitions(-DDEBUG_ON)                    # for WIN/Linux Logadd_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Logadd_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV showadd_definitions(-DPLATFORM_WINDOWS)
endif ()
set(TNN_ROOT 3rdparty/TNN)
include_directories(${TNN_ROOT}/include)
include_directories(${TNN_ROOT}/third_party/opencl/include)
add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")# Detector
include_directories(src)
set(SRC_LISTsrc/object_detection.cppsrc/classification.cppsrc/Interpreter.cpp)
add_library(dmcv SHARED ${SRC_LIST})
target_link_libraries(dmcv ${OpenCV_LIBS} base_utils)
MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")add_executable(Detector src/main.cpp)
#add_executable(Detector src/main_for_detect.cpp)
#add_executable(Detector src/main_for_yolov5.cpp)
target_link_libraries(Detector dmcv ${TNN} -lpthread)

(5)main源码

主程序中函数main实现提供了面部表情识别的使用方法,支持图片,视频和摄像头测试

  •     test_image_file();   // 测试图片文件
  •     test_video_file();   // 测试视频文件
  •     test_camera();       //测试摄像头
//
// Created by Pan on 2020/6/24.
//#include "object_detection.h"
#include "classification.h"
#include <iostream>
#include <string>
#include <vector>
#include "file_utils.h"
#include "image_utils.h"using namespace dl;
using namespace vision;
using namespace std;const int num_thread = 1; // 开启CPU线程数目
DeviceType device = GPU;  // 选择运行设备CPU/GPU
// 人脸检测模型
const char *det_model_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnmodel";
const char *det_proto_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnproto";
ObjectDetectionParam model_param = FACE_MODEL;//模型参数
// 分类模型
const char *cls_model_file = (char *) "../data/tnn/emotion/mobilenet_v2_112_112.tnnmodel";
const char *cls_proto_file = (char *) "../data/tnn/emotion/mobilenet_v2_112_112.tnnproto";
ClassificationParam ClassParam = EMOTION_MODEL;//模型参数// 设置检测阈值
const float scoreThresh = 0.5;
const float iouThresh = 0.3;
ObjectDetection *detector = new ObjectDetection(det_model_file,det_proto_file,model_param,num_thread,device);Classification *classifier = new Classification(cls_model_file,cls_proto_file,ClassParam,num_thread,device);/**** 测试图片文件*/
void test_image_file() {//测试图片的目录string image_dir = "../data/test_image";std::vector<string> image_list = get_files_list(image_dir);for (string image_path:image_list) {cv::Mat bgr_image = cv::imread(image_path);bgr_image = image_resize(bgr_image, 960);if (bgr_image.empty()) continue;FrameInfo resultInfo;// 进行人脸检测detector->detect(bgr_image, &resultInfo, scoreThresh, iouThresh);// 进行图像分类classifier->detect(bgr_image, &resultInfo);// 可视化检测结果classifier->visualizeResult(bgr_image, &resultInfo);}delete detector;detector = nullptr;delete classifier;classifier = nullptr;printf("FINISHED.\n");
}/**** 测试视频文件* @return*/
int test_video_file() {//测试视频文件string video_file = "../data/video/video-test.mp4";cv::VideoCapture cap;bool ret = get_video_capture(video_file, cap);cv::Mat frame;while (ret) {cap >> frame;if (frame.empty()) break;FrameInfo resultInfo;// 进行人脸检测detector->detect(frame, &resultInfo, scoreThresh, iouThresh);// 进行图像分类classifier->detect(frame, &resultInfo);// 可视化检测结果classifier->visualizeResult(frame, &resultInfo, 20);}cap.release();delete detector;detector = nullptr;delete classifier;classifier = nullptr;printf("FINISHED.\n");return 0;}/**** 测试摄像头* @return*/
int test_camera() {int camera = 0; //摄像头ID号(请修改成自己摄像头ID号)cv::VideoCapture cap;bool ret = get_video_capture(camera, cap);cv::Mat frame;while (ret) {cap >> frame;if (frame.empty()) break;FrameInfo resultInfo;// 进行人脸检测detector->detect(frame, &resultInfo, scoreThresh, iouThresh);// 进行图像分类classifier->detect(frame, &resultInfo);// 可视化检测结果classifier->visualizeResult(frame, &resultInfo, 20);}cap.release();delete detector;detector = nullptr;delete classifier;classifier = nullptr;printf("FINISHED.\n");return 0;}int main() {test_image_file();   // 测试图片文件//test_video_file();   // 测试视频文件//test_camera();       //测试摄像头return 0;
}

(6)源码编译和运行

编译脚本,或者直接:bash build.sh

#!/usr/bin/env bash
if [ ! -d "build/" ];thenmkdir "build"
elseecho "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./demo
  • 如果你要测试CPU运行的性能,请修改src/main.cpp

DeviceType device = CPU;

  • 如果你要测试GPU运行的性能,请修改src/main.cpp (需配置好OpenCL) 

DeviceType device = GPU;

PS:纯CPU C++推理模式比较耗时,需要几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。

(7)Demo测试效果 

 C++版本与Python版本的结果几乎是一致,下面是面部表情识别效果展示(其中不同表情用不同颜色表示了)


5.项目源码下载

C++实现表情识别项目源码下载地址:面部表情识别4:C++实现表情识别(含源码,可实时检测)

整套项目源码内容包含:

  1. 提供C/C++版本的人脸检测模型
  2. 提供C/C++版本的面部表情分类模型
  3. C++源码支持CPU和GPU,开启GPU(OpenCL)可以实时检测和识别(纯CPU推理速度很慢,模型加速需要配置好OpenCL,GPU推理约15ms左右)
  4. 项目配置好了base-utils和TNN,而OpenCV和OpenCL需要自行编译安装
  5. C/C++ Demo支持图片,视频,摄像头测试

 Android面部表情识别APP Demo体验:https://download.csdn.net/download/guyuealian/87575425

或者链接: https://pan.baidu.com/s/16OOi-qCENP4WbIeSzO5e9g 提取码: cs5g 

如果你需要面部表情识别的训练代码,请参考:《面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)》面部表情识别2:Pytorch实现表情识别(含表情识别数据集和训练代码)_AI吃大瓜的博客-CSDN博客


http://www.ppmy.cn/news/1023914.html

相关文章

从零开始学python(十七)JS逆向专题,看完直接入门

前言 今天讲述Python框架源码专题最后一个部分&#xff0c;爬虫集群部署&#xff0c;前面更新了十五个从零开始学python的系列文章&#xff0c;分别是&#xff1a; 编程语法/网络编程/多线程/多进程/协程/数据库机器学习/全栈开发/数据分析/Hadoop篇/Spark篇爬虫/自动化和抓包…

LUA pairs与ipairs

Lua编程语言中&#xff0c;pairs 和 ipairs 都用于遍历表&#xff08;table&#xff09;中的元素&#xff0c;但它们有一些不同之处。 在游戏开发中遇到了特效没完全消失的情况&#xff0c;因此记录一下 pairs&#xff1a; pairs 函数用于迭代表中的所有键值对。它会返回一个迭…

生产事故-走近科学之消失的JWT

0x01 事故背景 2021年11月26日01时10分&#xff0c;P公司正在进行某业务系统的生产环境部署操作&#xff0c;但其实早在00时30分的时候&#xff0c;他们已经完成过一次部署了&#xff0c;但是奇怪的是无论如何都通不过验证&#xff0c;无奈只好推倒重来&#xff0c;如此反复了…

SAP AIF-Application Interface Framework基本介绍

AIF-Application Interface Framework基本介绍 SAP AIF-应用程序接口框架特性&#xff1a; 通知业务用户出错的自动警报&#xff1b; 用户友好的事务&#xff0c;用于界面监控、错误处理和直接从应用系统内纠正错误&#xff1b; SAP GUI 和基于 Web 的用户界面&#xff1b; 使…

一文走进时序数据库性能测试工具 TSBS

一、背景 在物联网、车联网等时序数据场景中&#xff0c;数据的高速写入能力至关重要&#xff0c;会对产品方案的可用性、可靠性和扩展性产生影响。 以物联网为例&#xff0c;当面临千万甚至上亿设备、平均每个设备采集几十个到几百个指标时&#xff0c;每秒生成的数据将达到…

tensotflow中tf.title()和tf.broadcast()

tf.tile() 和 tf.broadcast_to() 都是 TensorFlow 中用于张量复制的函数&#xff0c;但它们的实现方式和使用场景略有不同。 tf.tile() 函数的定义如下&#xff1a; tf.tile(input, multiples, nameNone) 其中&#xff0c;input 表示要复制的张量&#xff0c;multiples 表示…

【MFC】07.MFC六大机制:消息映射-笔记

本专栏上两篇文章分别介绍了【MFC】05.MFC第一大机制&#xff1a;程序启动机制和【MFC】06.MFC第二大机制&#xff1a;窗口创建机制&#xff0c;这篇文章来为大家介绍MFC的第三大机制&#xff1a;消息映射 typfd要实现消息映射&#xff0c;必须满足的三个条件&#xff1a; 类必…

【Wamp】安装 | 局域网内设备访问

安装教程&#xff1a; https://wampserver.site/article/1.html 下载 https://www.wampserver.com/en/ 安装路径上不能有中文 安装好之后图标呈绿色 放入网页文件 将网页文件放置于wamp文件夹的www子文件夹 例如&#xff1a;\Wamp\program\www 修改http端口 WAMP服务器…