从零开始学python(十七)JS逆向专题,看完直接入门

news/2025/2/28 3:13:27/

前言

今天讲述Python框架源码专题最后一个部分,爬虫集群部署,前面更新了十五个从零开始学python的系列文章,分别是

  • 编程语法/网络编程/多线程/多进程/协程/数据库
  • 机器学习/全栈开发/数据分析/Hadoop篇/Spark篇
  • 爬虫/自动化和抓包//scrapy/feapder/爬虫集群部署

可以往前翻我的文章 进行查看

适用于零基础学习和进阶人群的python资源
① 腾讯认证python完整项目实战教程笔记PDF
② 十几个大厂python面试专题PDF
③ python全套视频教程(零基础-高级进阶JS逆向)
④ 百个项目实战+源码+笔记
⑤ 编程语法-机器学习-全栈开发-数据分析-爬虫-APP逆向等全套项目+文档

本系列将从九个方面讲解JavaScript逆向专题

1.浏览器调试

  • js作用域
  • 浏览器对象属性
  • 浏览器控制台

2.国标哈希算法

  • sha1算法
  • sha256算法
  • sha512算法
  • md5
  • hmac算法
  • python和JavaScript实现

3.国标对称加密

  • DES算法
  • AES算法
  • crypto-js模块使用
  • pycryptodome

4. 国标非对称加密

  • RAS算法原理
  • 非对称特征
  • JavaScript算法还原
  • ras模块
  • jesencrypt

5.webpack模块打包

  • webpack打包原理
  • webpack构造形式
  • 全局导出加密函数

6.JS混淆

  • JavaScript压缩 混淆原理
  • OB混淆特性
  • OB混淆JavaScript

7.cookie反爬处理

  • cookie加解密原理
  • cookie和session机制
  • cookie hook技巧
  • acw_sc_v2调试

9.AST抽象语法树

  • AST 技术介绍
  • 字符串和编码还原
  • evaluate方法学习
  • JavaScript实战解混淆

10.JS安全产品攻防

  • 瑞数
  • acw_sc_v2

image.png

第一章:浏览器调试

JavaScript是一种在浏览器中运行的脚本语言,它可以通过浏览器对象来访问和操作浏览器的各种属性和方法。在进行JavaScript逆向分析时,了解浏览器对象的属性和方法是非常重要的。

1.JS作用域

在JavaScript中,作用域是指变量和函数的可访问范围。JavaScript中有两种作用域:全局作用域和局部作用域。

全局作用域是指在整个JavaScript程序中都可以访问的变量和函数,而局部作用域是指只能在函数内部访问的变量和函数。

2.浏览器对象属性

在JavaScript中,浏览器对象是指浏览器提供的一些对象,可以通过这些对象来访问和操作浏览器的各种属性和方法。以下是一些常用的浏览器对象属性:

  • window:表示当前浏览器窗口或标签页。
  • document:表示当前文档对象。
  • location:表示当前文档的URL。
  • navigator:表示当前浏览器的信息。
  • history:表示当前浏览器的历史记录。

3.浏览器控制台

浏览器控制台是开发者工具中的一个重要组成部分,可以用来调试JavaScript代码、查看网络请求、分析页面性能等。以下是一些常用的浏览器控制台命令:

  • console.log():用于输出日志信息。
  • console.dir():用于输出对象的属性和方法。
  • console.error():用于输出错误信息。
  • console.warn():用于输出警告信息。
  • console.clear():用于清空控制台。
    示例代码:
// 输出日志信息
console.log("Hello, world!");// 输出对象的属性和方法
var obj = {name: "Tom", age: 18};
console.dir(obj);// 输出错误信息
console.error("Something went wrong!");// 输出警告信息
console.warn("This is a warning!");// 清空控制台
console.clear();

以上是JavaScript逆向专题之浏览器介绍的一些基础知识,对于进行JavaScript逆向分析的开发者来说,了解这些知识是非常重要的。

第二章:国标哈希算法

国标哈希算法是一种将任意长度的消息压缩成固定长度摘要的算法,常用于数据完整性校验、数字签名等领域。本文将从sha1算法、sha256算法、sha512算法、md5算法、hmac算法以及Python和JavaScript实现六个方向详细介绍国标哈希算法。

1.sha1算法

sha1算法是一种安全性较高的哈希算法,将任意长度的消息压缩成160位的摘要。以下是Python实现sha1算法的示例代码:

import hashlibdef sha1(data):sha1 = hashlib.sha1()sha1.update(data.encode('utf-8'))return sha1.hexdigest()

以下是JavaScript实现sha1算法的示例代码:

function sha1(data) {const sha1 = crypto.createHash('sha1');sha1.update(data);return sha1.digest('hex');
}

2.sha256算法

sha256算法是一种更安全的哈希算法,将任意长度的消息压缩成256位的摘要。以下是Python实现sha256算法的示例代码:

import hashlibdef sha256(data):sha256 = hashlib.sha256()sha256.update(data.encode('utf-8'))return sha256.hexdigest()

以下是JavaScript实现sha256算法的示例代码:

function sha256(data) {const sha256 = crypto.createHash('sha256');sha256.update(data);return sha256.digest('hex');
}

3.sha512算法

sha512算法是一种更安全的哈希算法,将任意长度的消息压缩成512位的摘要。以下是Python实现sha512算法的示例代码:

import hashlibdef sha512(data):sha512 = hashlib.sha512()sha512.update(data.encode('utf-8'))return sha512.hexdigest()

以下是JavaScript实现sha512算法的示例代码:

function sha512(data) {const sha512 = crypto.createHash('sha512');sha512.update(data);return sha512.digest('hex');
}

4.md5算法

md5算法是一种较为常用的哈希算法,将任意长度的消息压缩成128位的摘要。以下是Python实现md5算法的示例代码:

import hashlibdef md5(data):md5 = hashlib.md5()md5.update(data.encode('utf-8'))return md5.hexdigest()

以下是JavaScript实现md5算法的示例代码:

function md5(data) {const md5 = crypto.createHash('md5');md5.update(data);return md5.digest('hex');
}

5.hmac算法

hmac算法是一种基于哈希函数和密钥的消息认证码算法,常用于数据完整性校验和数字签名。以下是Python实现hmac算法的示例代码:

import hmac
import hashlibdef hmac_sha256(key, data):hmac_sha256 = hmac.new(key.encode('utf-8'), data.encode('utf-8'), hashlib.sha256)return hmac_sha256.hexdigest()

以下是JavaScript实现hmac算法的示例代码:

function hmac_sha256(key, data) {const hmac_sha256 = crypto.createHmac('sha256', key);hmac_sha256.update(data);return hmac_sha256.digest('hex');
}

6.Python和JavaScript实现

以下是Python和JavaScript实现sha256算法的示例代码:

Python

import hashlibdef sha256(data):sha256 = hashlib.sha256()sha256.update(data.encode('utf-8'))return sha256.hexdigest()

JavaScript

javascript
function sha256(data) {const sha256 = crypto.createHash('sha256');sha256.update(data);return sha256.digest('hex');
}

以上是国标哈希算法的介绍,包括sha1算法、sha256算法、sha512算法、md5算法、hmac算法以及Python和JavaScript实现。在实际应用中,需要根据具体需求选择合适的哈希算法。

第三章:国标对称加密

国标对称加密算法是指由中国国家密码管理局发布的加密算法标准,包括DES算法、AES算法等。在JavaScript逆向中,了解这些算法的原理和使用方法是非常重要的。

1.DES算法

DES算法是一种对称加密算法,密钥长度为56位,分为加密和解密两个过程。在JavaScript中,可以使用crypto-js模块进行DES加密和解密操作。

加密示例代码

var key = CryptoJS.enc.Utf8.parse("1234567890123456");
var iv = CryptoJS.enc.Utf8.parse("1234567890123456");
var encrypted = CryptoJS.DES.encrypt("Hello World", key, {iv: iv,mode: CryptoJS.mode.CBC,padding: CryptoJS.pad.Pkcs7
});
console.log(encrypted.toString());

解密示例代码

var key = CryptoJS.enc.Utf8.parse("1234567890123456");
var iv = CryptoJS.enc.Utf8.parse("1234567890123456");
var decrypted = CryptoJS.DES.decrypt(encrypted, key, {iv: iv,mode: CryptoJS.mode.CBC,padding: CryptoJS.pad.Pkcs7
});
console.log(decrypted.toString(CryptoJS.enc.Utf8));

2.AES算法

AES算法是一种对称加密算法,密钥长度可以是128位、192位或256位,分为加密和解密两个过程。在JavaScript中,可以使用crypto-js模块进行AES加密和解密操作。

加密示例代码

var key = CryptoJS.enc.Utf8.parse("12345678901234567890123456789012");
var iv = CryptoJS.enc.Utf8.parse("1234567890123456");
var encrypted = CryptoJS.AES.encrypt("Hello World", key, {iv: iv,mode: CryptoJS.mode.CBC,padding: CryptoJS.pad.Pkcs7
});
console.log(encrypted.toString());

解密示例代码

var key = CryptoJS.enc.Utf8.parse("12345678901234567890123456789012");
var iv = CryptoJS.enc.Utf8.parse("1234567890123456");
var decrypted = CryptoJS.AES.decrypt(encrypted, key, {iv: iv,mode: CryptoJS.mode.CBC,padding: CryptoJS.pad.Pkcs7
});
console.log(decrypted.toString(CryptoJS.enc.Utf8));

3.crypto-js模块使用

crypto-js是一个JavaScript加密库,支持多种加密算法,包括DES、AES、SHA-1、SHA-256等。在使用之前,需要先引入crypto-js库。

<script src="https://cdnjs.cloudflare.com/ajax/libs/crypto-js/4.0.0/crypto-js.min.js"></script>

4.pycryptodome

pycryptodome是一个Python加密库,支持多种加密算法,包括DES、AES、SHA-1、SHA-256等。在使用之前,需要先安装pycryptodome库。

pip install pycryptodome

使用示例:

from Crypto.Cipher import AESkey = b'1234567890123456'
iv = b'1234567890123456'
cipher = AES.new(key, AES.MODE_CBC, iv)
msg = b'Hello World'
encrypted = cipher.encrypt(msg)
print(encrypted)cipher = AES.new(key, AES.MODE_CBC, iv)
decrypted = cipher.decrypt(encrypted)
print(decrypted)

第四章:国标非对称加密

1.RSA算法原理:

RSA算法是一种非对称加密算法,它的安全性基于大数分解的困难性。RSA算法的核心是选择两个大质数p和q,计算它们的乘积n=pq,然后选择一个整数e,使得1<e<φ(n)且e与φ(n)互质,其中φ(n)=(p-1)(q-1)。接着计算d,使得d*e mod φ(n)=1,d称为e的模反元素。公钥为(n,e),私钥为(n,d)。

2.非对称特征:

非对称加密算法有两个密钥,一个是公钥,一个是私钥。公钥可以公开,任何人都可以使用公钥对数据进行加密,但只有私钥的持有者才能解密。非对称加密算法的安全性基于数学难题,如大数分解、离散对数等,这些问题在计算机领域内是非常困难的。

3.JavaScript算法还原:

在JavaScript中,可以使用BigInt类型来处理大数运算。首先,需要实现一个函数来判断一个数是否为质数:

function isPrime(n) {if (n <= 1) {return false;}for (let i = 2; i <= Math.sqrt(n); i++) {if (n % i === 0) {return false;}}return true;
}

接着,可以实现一个函数来生成大质数:

function generatePrime(bits) {let p;do {p = BigInt(Math.floor(Math.random() * 2 ** bits));} while (!isPrime(p));return p;
}

然后,可以实现一个函数来计算两个数的最大公约数:

function gcd(a, b) {if (b === 0) {return a;}return gcd(b, a % b);
}

接着,可以实现一个函数来计算两个数的模反元素:

function modInverse(a, m) {let [x, y, u, v] = [0n, 1n, 1n, 0n];while (a !== 0n) {let q = m / a;let r = m % a;let m1 = x - u * q;let m2 = y - v * q;m = a;a = r;x = u;y = v;u = m1;v = m2;}return x < 0n ? x + m : x;
}

最后,可以实现一个函数来生成RSA密钥对:

function generateRSAKeyPair(bits) {let p = generatePrime(bits / 2);let q = generatePrime(bits / 2);let n = p * q;let phi = (p - 1n) * (q - 1n);let e = 65537n;let d = modInverse(e, phi);return {publicKey: [n, e],privateKey: [n, d],};
}

4.ras模块

在Node.js中,可以使用crypto模块来实现RSA加密和解密。首先,需要生成RSA密钥对:

const { generateKeyPairSync } = require('crypto');const { publicKey, privateKey } = generateKeyPairSync('rsa', {modulusLength: 2048,publicKeyEncoding: {type: 'spki',format: 'pem',},privateKeyEncoding: {type: 'pkcs8',format: 'pem',},
});

接着,可以使用公钥对数据进行加密:

const crypto = require('crypto');const data = 'hello world';
const encrypted = crypto.publicEncrypt(publicKey, Buffer.from(data));
console.log(encrypted.toString('base64'));

使用私钥对数据进行解密:

const decrypted = crypto.privateDecrypt(privateKey, encrypted);
console.log(decrypted.toString());

5.jesencrypt

jesencrypt是一个基于JavaScript实现的RSA加密库,可以在浏览器中使用。它的使用方法与Node.js中的crypto模块类似。首先,需要生成RSA密钥对:

const { generateKeyPair } = require('jesencrypt');generateKeyPair().then(({ publicKey, privateKey }) => {console.log(publicKey);console.log(privateKey);
});

接着,可以使用公钥对数据进行加密:

const { encrypt } = require('jesencrypt');const data = 'hello world';
encrypt(data, publicKey).then((encrypted) => {console.log(encrypted);
});

使用私钥对数据进行解密:

const { decrypt } = require('jesencrypt');const encrypted = '...';
decrypt(encrypted, privateKey).then((decrypted) => {console.log(decrypted);
});

第五章:webpack模块打包

1.webpack打包原理

Webpack是一个模块打包工具,它可以将多个模块打包成一个文件,以便于在浏览器中使用。Webpack的打包原理是将所有的模块打包成一个或多个bundle文件,这些文件可以是JavaScript、CSS、图片等资源文件。

Webpack的打包过程分为三个阶段

  • 解析模块:Webpack会从入口文件开始,递归地解析所有的依赖模块,形成一个依赖树。

  • 编译模块:Webpack会将每个模块编译成一个可执行的JavaScript代码块。

  • 输出文件:Webpack会将所有的JavaScript代码块合并成一个或多个bundle文件,以便于在浏览器中使用。

2.webpack构造形式

Webpack的构造形式分为两种

1)命令行形式:通过命令行输入webpack命令,可以将所有的模块打包成一个或多个bundle文件。

2)配置文件形式:通过配置文件webpack.config.js,可以对Webpack进行更加详细的配置,包括入口文件、输出文件、模块解析规则、插件等。

3.全局导出加密函数

在Webpack中,可以通过全局导出加密函数来保护JavaScript代码的安全性。全局导出加密函数的原理是将JavaScript代码通过加密算法进行加密,然后将加密后的代码作为一个函数的返回值,这个函数可以在全局范围内调用,从而实现对JavaScript代码的保护。

全局导出加密函数的实现步骤如下

  • 1)将需要加密的JavaScript代码通过加密算法进行加密。

  • 2)将加密后的代码作为一个函数的返回值。

  • 3)将这个函数通过module.exports导出,从而可以在全局范围内调用。

示例代码如下:

const encrypt = require('encrypt');const code = 'console.log("Hello, World!");';const encryptedCode = encrypt(code);module.exports = function() {return eval(encryptedCode);
};

在上面的代码中,encrypt函数是一个加密函数,它将JavaScript代码进行加密,并返回加密后的代码。然后,将这个加密后的代码通过module.exports导出,从而可以在全局范围内调用。最后,通过eval函数执行加密后的代码。

第六章:JS混淆

JavaScript混淆是一种将JavaScript代码进行压缩和混淆的技术,旨在增加代码的复杂度和难度,使得代码难以被逆向工程师或黑客破解和篡改。下面从JavaScript压缩混淆原理、OB混淆特性和OB混淆JavaScript三个方向详细介绍。

1.JavaScript压缩混淆原理

JavaScript压缩混淆的目的是为了减小文件体积,提高加载速度,同时也可以增加代码的安全性,防止被恶意篡改或者盗用。JavaScript压缩混淆的原理主要是通过删除无用的空格、注释、换行符等来减小文件体积,同时通过重命名变量、函数名等来增加代码的难度,使得代码难以被理解和修改。

2.OB混淆特性

OB混淆是一种常见的JavaScript混淆方式,它的特点是将JavaScript代码中的变量、函数名等进行随机重命名,使得代码难以被理解和修改。OB混淆的主要特性包括:

  • 变量、函数名随机重命名:OB混淆会将JavaScript代码中的变量、函数名等进行随机重命名,使得代码难以被理解和修改。

  • 字符串加密:OB混淆会将JavaScript代码中的字符串进行加密,使得代码难以被理解和修改。

  • 代码结构混淆:OB混淆会将JavaScript代码中的结构进行混淆,使得代码难以被理解和修改。

3.OB混淆JavaScript三个方向详解

变量、函数名随机重命名

OB混淆会将JavaScript代码中的变量、函数名等进行随机重命名,使得代码难以被理解和修改。这个过程可以通过以下步骤实现:

  • 遍历JavaScript代码,获取所有的变量、函数名等标识符。

  • 生成随机的标识符名称,并将原有的标识符名称替换为随机名称。

  • 更新代码中所有引用该标识符的地方,将其替换为新的随机名称。

字符串加密

OB混淆会将JavaScript代码中的字符串进行加密,使得代码难以被理解和修改。这个过程可以通过以下步骤实现:

  • 遍历JavaScript代码,获取所有的字符串。

  • 将字符串进行加密,可以使用常见的加密算法,如Base64、AES等。

  • 更新代码中所有引用该字符串的地方,将其替换为加密后的字符串。

代码结构混淆

OB混淆会将JavaScript代码中的结构进行混淆,使得代码难以被理解和修改。这个过程可以通过以下步骤实现:

  • 将JavaScript代码进行分块,将每个块中的代码进行随机排序。

  • 将每个块中的代码进行随机组合,生成新的代码结构。

  • 更新代码中所有引用该块的地方,将其替换为新的代码结构。

总之,OB混淆是一种常见的JavaScript混淆方式,可以有效地增加代码的安全性,防止被恶意篡改或者盗用。但是,OB混淆也会增加代码的复杂度和维护成本,因此需要在实际应用中进行权衡。

第七章:cookie反爬处理

在爬虫领域,网站通常会使用cookie来进行反爬处理,以识别爬虫并限制其访问。因此,了解cookie反爬处理的原理和技巧对于爬虫开发者来说非常重要。

1.cookie加解密原理

在HTTP协议中,cookie是通过Set-Cookie和Cookie头来传递的。网站通常会对cookie进行加密或者编码,以防止被恶意篡改或者窃取。常见的加密方式包括Base64、MD5、SHA1等。

2.cookie和session机制

cookie和session是Web开发中常用的两种机制。cookie是一种存储在客户端的小型文本文件,用于存储用户的身份信息、浏览历史等。而session则是一种在服务器端存储的数据结构,用于存储用户的会话信息。通常情况下,服务器会将session ID存储在cookie中,以便在后续的请求中识别用户身份。

3.cookie hook技巧

cookie hook是一种常用的反爬技巧,它可以通过修改cookie的值来绕过网站的反爬机制。常见的cookie hook技巧包括:

  • 修改cookie的值,以绕过网站的限制。
  • 删除cookie,以避免被网站识别为爬虫。
  • 伪造cookie,以模拟正常用户的行为。

4.acw_sc_v2调试

在进行cookie反爬处理时,经常会遇到acw_sc_v2这个参数。这个参数是阿里云CDN的一种反爬机制,用于检测请求是否来自于正常的浏览器。如果请求中没有正确的acw_sc_v2参数,CDN会返回403错误。

为了解决这个问题,我们需要了解acw_sc_v2的生成方式和调试方法。

acw_sc_v2的生成方式
acw_sc_v2参数的生成方式比较复杂,需要使用一些加密算法。一般来说,生成acw_sc_v2参数需要以下步骤:

  • 获取当前时间戳,单位为毫秒。

  • 将时间戳转换为16进制字符串,并在前面补0,使其长度为13位。

  • 将13位时间戳字符串和一个随机字符串拼接起来,得到一个新的字符串。

  • 对新字符串进行MD5加密,得到一个32位的字符串。

  • 将32位字符串的前6位和后6位分别取出来,得到两个6位的字符串。

  • 将两个6位字符串拼接起来,得到12位的字符串,即为acw_sc_v2参数的值。

acw_sc_v2的调试方法
在进行cookie反爬处理时,我们需要调试acw_sc_v2参数的生成过程,以便正确地生成该参数。下面介绍几种调试方法:

  • 使用浏览器开发者工具

在浏览器中打开目标网站,按下F12键打开开发者工具。在Network选项卡中找到一个请求,查看该请求的请求头信息。一般来说,acw_sc_v2参数会出现在请求头的Cookie字段中。将该Cookie字段复制下来,然后使用MD5加密算法对其进行加密,得到32位的字符串。最后按照上述步骤,将32位字符串转换为acw_sc_v2参数的值。

  • 使用Python脚本

使用Python脚本可以自动化生成acw_sc_v2参数。下面是一个Python脚本示例:

import time
import random
import hashlibdef generate_acw_sc_v2():timestamp = str(int(time.time() * 1000))random_str = ''.join(random.sample('abcdefghijklmnopqrstuvwxyz0123456789', 6))new_str = timestamp + random_strmd5_str = hashlib.md5(new_str.encode('utf-8')).hexdigest()acw_sc_v2 = md5_str[:6] + md5_str[-6:]return acw_sc_v2

该脚本会生成一个随机的acw_sc_v2参数值。

  • 使用在线工具

在网上可以找到一些在线工具,可以帮助我们生成acw_sc_v2参数

第九章:AST抽象语法树

AST(Abstract Syntax Tree)抽象语法树是一种将代码转换为树形结构的数据结构,它可以帮助我们更好地理解代码的结构和含义。在JavaScript中,AST可以用于代码分析、代码优化、代码混淆等方面。

下面从AST技术介绍、字符串和编码还原、evaluate方法学习、JavaScript实战解混淆几个方向详细介绍AST的应用。

1.AST技术介绍

AST是一种将代码转换为树形结构的数据结构,它可以帮助我们更好地理解代码的结构和含义。在JavaScript中,AST可以用于代码分析、代码优化、代码混淆等方面。

AST的生成过程一般分为三个步骤:词法分析、语法分析和AST构建。词法分析将代码分解为一个个的词法单元,语法分析将词法单元组合成语法树,AST构建则是将语法树转换为AST。

2.字符串和编码还原

在JavaScript中,代码经过压缩和混淆后,常常会将变量名、函数名等替换为无意义的字符串或者编码。这时候,我们需要将这些字符串和编码还原为原来的变量名、函数名等。

字符串还原可以通过正则表达式或者字符串替换的方式实现。编码还原则需要根据具体的编码方式进行解码,常见的编码方式有Unicode编码、Base64编码等。

AST字符串和编码还原是指将AST转换为字符串形式,并将字符串还原为AST的过程。这个过程在JavaScript代码混淆和反混淆中非常重要。

下面是一个简单的示例,展示如何将AST转换为字符串:

const esprima = require('esprima');const code = 'function add(a, b) { return a + b; }';
const ast = esprima.parseScript(code);const astString = JSON.stringify(ast, null, 2);
console.log(astString);

在这个示例中,我们使用了esprima库将代码解析为AST。然后,我们使用JSON.stringify方法将AST转换为字符串,并将其打印到控制台上。

输出结果如下:

{"type": "Program","body": [{"type": "FunctionDeclaration","id": {"type": "Identifier","name": "add"},"params": [{"type": "Identifier","name": "a"},{"type": "Identifier","name": "b"}],"body": {"type": "BlockStatement","body": [{"type": "ReturnStatement","argument": {"type": "BinaryExpression","operator": "+","left": {"type": "Identifier","name": "a"},"right": {"type": "Identifier","name": "b"}}}]}}],"sourceType": "script"
}

我们可以看到,AST被转换为了一个JSON字符串,其中每个节点都有一个type属性,用于表示节点的类型。例如,FunctionDeclaration表示函数声明,Identifier表示标识符,BinaryExpression表示二元表达式等等。

接下来,我们将介绍如何将字符串还原为AST。

const esprima = require('esprima');const astString = `{"type": "Program","body": [{"type": "FunctionDeclaration","id": {"type": "Identifier","name": "add"},"params": [{"type": "Identifier","name": "a"},{"type": "Identifier","name": "b"}],"body": {"type": "BlockStatement","body": [{"type": "ReturnStatement","argument": {"type": "BinaryExpression","operator": "+","left": {"type": "Identifier","name": "a"},"right": {"type": "Identifier","name": "b"}}}]}}],"sourceType": "script"
}`;const ast = JSON.parse(astString);
console.log(ast);

在这个示例中,我们将AST字符串直接赋值给一个变量。然后,我们使用JSON.parse方法将字符串转换为AST对象,并将其打印到控制台上。

输出结果与之前的示例相同,不再赘述。

总的来说,AST字符串和编码还原是JavaScript代码混淆和反混淆中非常重要的一环。掌握这个技术可以帮助我们更好地理解和处理混淆代码。

3.evaluate方法学习

evaluate方法是JavaScript中的一个内置函数,它可以将字符串作为代码执行。在AST中,我们可以通过evaluate方法执行AST节点中的代码。

evaluate方法的使用非常简单,只需要将AST节点中的代码转换为字符串,然后传入evaluate方法即可。需要注意的是,由于evaluate方法会执行任意的代码,因此在使用时需要谨慎,避免执行恶意代码。

4.JavaScript解混淆

在实际开发中,我们常常会遇到代码混淆的情况。代码混淆可以通过将代码压缩、变量名替换、字符串编码等方式实现,从而使代码难以阅读和理解。

在解混淆过程中,AST可以帮助我们更好地理解代码的结构和含义,从而更容易地还原出原始代码。常见的解混淆方法包括字符串和编码还原、变量名还原、函数还原等。

总之,AST是一种非常有用的技术,它可以帮助我们更好地理解和处理JavaScript代码。在实际开发中,我们可以通过AST实现代码分析、代码优化、代码混淆等功能,从而提高代码的质量和安全性。

第十章:JS安全产品攻防

1.瑞数

2.acw_sc_v2

适用于零基础学习和进阶人群的python资源
① 腾讯认证python完整项目实战教程笔记PDF
② 十几个大厂python面试专题PDF
③ python全套视频教程(零基础-高级进阶JS逆向)
④ 百个项目实战+源码+笔记
⑤ 编程语法-机器学习-全栈开发-数据分析-爬虫-APP逆向等全套项目+文档


http://www.ppmy.cn/news/1023913.html

相关文章

LUA pairs与ipairs

Lua编程语言中&#xff0c;pairs 和 ipairs 都用于遍历表&#xff08;table&#xff09;中的元素&#xff0c;但它们有一些不同之处。 在游戏开发中遇到了特效没完全消失的情况&#xff0c;因此记录一下 pairs&#xff1a; pairs 函数用于迭代表中的所有键值对。它会返回一个迭…

生产事故-走近科学之消失的JWT

0x01 事故背景 2021年11月26日01时10分&#xff0c;P公司正在进行某业务系统的生产环境部署操作&#xff0c;但其实早在00时30分的时候&#xff0c;他们已经完成过一次部署了&#xff0c;但是奇怪的是无论如何都通不过验证&#xff0c;无奈只好推倒重来&#xff0c;如此反复了…

SAP AIF-Application Interface Framework基本介绍

AIF-Application Interface Framework基本介绍 SAP AIF-应用程序接口框架特性&#xff1a; 通知业务用户出错的自动警报&#xff1b; 用户友好的事务&#xff0c;用于界面监控、错误处理和直接从应用系统内纠正错误&#xff1b; SAP GUI 和基于 Web 的用户界面&#xff1b; 使…

一文走进时序数据库性能测试工具 TSBS

一、背景 在物联网、车联网等时序数据场景中&#xff0c;数据的高速写入能力至关重要&#xff0c;会对产品方案的可用性、可靠性和扩展性产生影响。 以物联网为例&#xff0c;当面临千万甚至上亿设备、平均每个设备采集几十个到几百个指标时&#xff0c;每秒生成的数据将达到…

tensotflow中tf.title()和tf.broadcast()

tf.tile() 和 tf.broadcast_to() 都是 TensorFlow 中用于张量复制的函数&#xff0c;但它们的实现方式和使用场景略有不同。 tf.tile() 函数的定义如下&#xff1a; tf.tile(input, multiples, nameNone) 其中&#xff0c;input 表示要复制的张量&#xff0c;multiples 表示…

【MFC】07.MFC六大机制:消息映射-笔记

本专栏上两篇文章分别介绍了【MFC】05.MFC第一大机制&#xff1a;程序启动机制和【MFC】06.MFC第二大机制&#xff1a;窗口创建机制&#xff0c;这篇文章来为大家介绍MFC的第三大机制&#xff1a;消息映射 typfd要实现消息映射&#xff0c;必须满足的三个条件&#xff1a; 类必…

【Wamp】安装 | 局域网内设备访问

安装教程&#xff1a; https://wampserver.site/article/1.html 下载 https://www.wampserver.com/en/ 安装路径上不能有中文 安装好之后图标呈绿色 放入网页文件 将网页文件放置于wamp文件夹的www子文件夹 例如&#xff1a;\Wamp\program\www 修改http端口 WAMP服务器…

python是如何进行参数传递的?

在分析python的参数传递是如何进行的之前&#xff0c;我们需要先来了解一下&#xff0c;python变量和赋值的基本原理&#xff0c;这样有助于我们更好的理解参数传递。 python变量以及赋值 数值 从几行代码开始 In [1]: a 1In [2]: b aIn [3]: a a 1我们先将1赋值给a&am…