Python 中的机器学习简介:多项式回归

news/2024/11/16 21:55:54/

一、说明

        多项式回归可以识别自变量和因变量之间的非线性关系。本文是关于回归、梯度下降和 MSE 系列文章的第三篇。前面的文章介绍了简单线性回归、回归的正态方程和多元线性回归。

二、多项式回归

        多项式回归用于最适合曲线拟合的复杂数据。它可以被视为多元线性回归的子集。

        请注意,X₀ 是偏差的一列;这允许在第一篇文章中讨论的广义公式。使用上述等式,每个“自变量”都可以被视为 X₁ 的指数版本。

        这允许从多元线性回归使用相同的模型,因为只需要识别每个变量的系数。可以创建一个简单的三阶多项式模型作为示例。其等式如下:

        模型、梯度下降和 MSE 的广义函数可用于前面的文章:

# line of best fit
def model(w, X):"""Inputs:w: array of weights | (num features, 1)X: array of inputs  | (n samples, num features)Output:returns the output of X@w | (n samples, 1)"""return torch.matmul(X, w)
# mean squared error (MSE)
def MSE(Yhat, Y):"""Inputs:Yhat: array of predictions | (n samples, 1)Y: array of expected outputs | (n samples, 1)Output:returns the loss of the model, which is a scalar"""return torch.mean((Yhat-Y)**2) # mean((error)^2)
# optimizer
def gradient_descent(w):"""Inputs:w: array of weights | (num features, 1)Global Variables / Constants:X: array of inputs  | (n samples, num features)Y: array of expected outputs | (n samples, 1)lr: learning rate to scale the gradientOutput:returns the updated weights""" n = X.shape[0]return w - (lr * 2/n) * (torch.matmul(-Y.T, X) + torch.matmul(torch.matmul(w.T, X.T), X)).reshape(w.shape)

三、创建数据

        现在,所需要的只是一些用于训练模型的数据。可以使用“蓝图”功能,并且可以添加随机性。这遵循与前面文章相同的方法。蓝图如下所示:

        可以创建大小为 (800, 4) 的训练集和大小为 (200, 4) 的测试集。请注意,除偏差外,每个特征都是第一个特征的指数版本。

import torchtorch.manual_seed(5)
torch.set_printoptions(precision=2)# features
X0 = torch.ones((1000,1))
X1 = (100*(torch.rand(1000) - 0.5)).reshape(-1,1) # generates 1000 random numbers from -50 to 50
X2, X3 = X1**2, X1**3
X = torch.hstack((X0,X1,X2,X3))# normal distribution with a mean of 0 and std of 8
normal = torch.distributions.Normal(loc=0, scale=8)# targets
Y = (3*X[:,3] + 2*X[:,2] + 1*X[:,1] + 5 + normal.sample(torch.ones(1000).shape)).reshape(-1,1)# train, test
Xtrain, Xtest = X[:800], X[800:]
Ytrain, Ytest = Y[:800], Y[800:]

        定义初始权重后,可以使用最佳拟合线绘制数据。

torch.manual_seed(5)
w = torch.rand(size=(4, 1))
w
tensor([[0.83],[0.13],[0.91],[0.82]])
import matplotlib.pyplot as pltdef plot_lbf():"""Output:prints the line of best fit in comparison to the train and test data"""# plot the train and test setsplt.scatter(Xtrain[:,1],Ytrain,label="train")plt.scatter(Xtest[:,1],Ytest,label="test")# plot the line of best fitX1_plot = torch.arange(-50, 50.1,.1).reshape(-1,1) X2_plot, X3_plot = X1_plot**2, X1_plot**3X0_plot = torch.ones(X1_plot.shape)X_plot = torch.hstack((X0_plot,X1_plot,X2_plot,X3_plot))plt.plot(X1_plot.flatten(), model(w, X_plot).flatten(), color="red", zorder=4)plt.xlim(-50, 50)plt.xlabel("$X$")plt.ylabel("$Y$")plt.legend()plt.show()plot_lbf()
图片来源:作者

四、训练模型

        为了部分最小化成本函数,可以使用 5e-11 和 500,000 epoch 的学习率与梯度下降一起使用。

lr = 5e-11
epochs = 500000# update the weights 1000 times
for i in range(0, epochs):# update the weightsw = gradient_descent(w)# print the new values every 10 iterationsif (i+1) % 100000 == 0:print("epoch:", i+1)print("weights:", w)print("Train MSE:", MSE(model(w,Xtrain), Ytrain))print("Test MSE:", MSE(model(w,Xtest), Ytest))print("="*10)plot_lbf()
epoch: 100000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.87)
Test MSE: tensor(162.55)
==========
epoch: 200000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.52)
Test MSE: tensor(162.22)
==========
epoch: 300000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(163.19)
Test MSE: tensor(161.89)
==========
epoch: 400000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(162.85)
Test MSE: tensor(161.57)
==========
epoch: 500000
weights: tensor([[0.83],[0.13],[2.00],[3.00]])
Train MSE: tensor(162.51)
Test MSE: tensor(161.24)
==========
图片来源:作者

        即使有 500,000 个 epoch 和极小的学习率,该模型也无法识别前两个权重。虽然当前的解决方案非常准确,MSE为161.24,但可能需要数百万个epoch才能完全最小化它。这是多项式回归梯度下降的局限性之一。

五、正态方程

        作为替代方案,可以使用第二篇文章中的正态方程直接计算优化权重:

def NormalEquation(X, Y):"""Inputs:X: array of input values | (n samples, num features)Y: array of expected outputs | (n samples, 1)Output:returns the optimized weights | (num features, 1)"""return torch.inverse(X.T @ X) @ X.T @ Yw = NormalEquation(Xtrain, Ytrain)
w
tensor([[4.57],[0.98],[2.00],[3.00]])

        正态方程能够立即识别每个权重的正确值,并且每组的MSE比梯度下降时低约100点:

MSE(model(w,Xtrain), Ytrain), MSE(model(w,Xtest), Ytest)
(tensor(60.64), tensor(63.84))

六、结论

        通过实现简单线性、多重线性和多项式回归,接下来的两篇文章将介绍套索和岭回归。这些类型的回归在机器学习中引入了两个重要概念:过拟合和正则化。

 参考文章:

亨特·菲利普斯


http://www.ppmy.cn/news/1014590.html

相关文章

kubeasz在线安装K8S集群单master

1.基础系统配置 确保在干净的系统上开始安装,不能使用曾经装过kubeadm或其他k8s发行版的环境 系统是Ubuntu 或者CentOS 7 2.下载文件 2.1 下载工具脚本ezdown,举例使用kubeasz版本3.5.0 #此版本默认安装的是 K8S v1.26.0 export release3.5.0 wget h…

[详解-vector] C++必知必会 vector常用各种操作解析

vector 是 C 标准库中的一个动态数组容器,它可以自动管理内存大小,可以在运行时根据需要动态增长或缩小。它是一个非常常用且强大的容器,用于存储一系列元素。下面详细介绍 vector 的使用方法,并提供相应的代码案例。 1.包含头文…

PIC单片机配置字的设置

PIC单片机配置字的设置 PIC系列单片机,其芯片内部大都设置有一个特殊的程序存储单元,地址根据不同的单片机而定,此存储单元用来由单片机用户自由配置或定义单片机内部的一些功能电路单元的性能选项,所以被称之为系统配置字。目前…

Docker desktop使用配置

1. 下载安装 https://www.docker.com/ 官网下载并安装doker desktop 2. 配置镜像 (1)首先去阿里云网站上进行注册:https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors (2)注册完成后搜索:容…

实际工作中通过python+go-cqhttp+selenium实现自动检测维护升级并发送QQ通知消息(程序内测)

说明:该篇博客是博主一字一码编写的,实属不易,请尊重原创,谢谢大家! 首先,今年比较忙没有多余时间去实操创作分享文章给大家,那就给大家分享下博主在实际工作中的一点点内容吧,就当交…

算法题--动态规划(连续子数组的最大和、丑数、n个骰子的点数)

目录 动态规划 JS构建二维数组注意 题目 连续子数组的最大和 原题链接 解析 核心思想 答案 丑数 原题链接 解析 核心思想 答案 n个骰子的点数 原题链接 解析 核心思想 答案 动态规划 通常用于优化递归或求最大、最小值等问题。一般把结果存在一个数组中. 首…

机器视觉赛道持续火热,深眸科技坚持工业AI视觉切入更多应用领域

随着深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能逐渐从学术界向工业界落地。而机器视觉作为人工智能领域中一个正在快速发展的分支,广泛应用于工业制造的识别、检测、测量、定位等场景,相较于人眼,在精…

线性代数(二) 矩阵及其运算

前言 行列式det(A) 其实表示的只是一个值 ∣ a b c d ∣ a d − b c \begin{vmatrix} a & b\\ c & d\end{vmatrix} ad -bc ​ac​bd​ ​ad−bc,其基本变化是基于这个值是不变。而矩阵表示的是一个数表。 定义 矩阵与线性变换的关系 即得 ( a 11 a 12…