【IDEA+Spark Streaming 3.4.1+Dstream监控套接字流统计WordCount保存至MySQL8】

news/2025/1/1 10:30:25/

【IDEA+Spark Streaming 3.4.1+Dstream监控套接字流统计WordCount保存至MySQL8】

把DStream写入到MySQL数据库中

  • Spark 3.4.1
  • MySQL 8.0.30
  • sbt 1.9.2

文章目录

  • 【IDEA+Spark Streaming 3.4.1+Dstream监控套接字流统计WordCount保存至MySQL8】
  • 前言
  • 一、背景说明
  • 二、使用步骤
    • 1.引入库
    • 2.开发代码
    • 运行测试
  • 总结


前言

需要基于Spark Streaming 将实时监控的套接字流统计WordCount结果保存至MySQL


提示:本项目通过sbt控制依赖

一、背景说明

在Spark应用中,外部系统经常需要使用到Spark DStream处理后的数据,因此,需要采用输出操作把DStream的数据输出到数据库或者文件系统中

Spark Streaming是一个基于Spark的实时计算框架,它可以从多种数据源消费数据,并对数据进行高效、可扩展、容错的处理。Spark Streaming的工作原理有以下几个步骤:

  • 数据接收:Spark Streaming可以从各种输入源接收数据,如Kafka、Flume、Twitter、Kinesis等,然后将数据分发到Spark集群中的不同节点上。每个节点上有一个接收器(Receiver)负责接收数据,并将数据存储在内存或磁盘中。
  • 数据划分:Spark Streaming将连续的数据流划分为一系列小批量(Batch)的数据,每个批次包含一定时间间隔内的数据。这个时间间隔称为批处理间隔(Batch Interval),可以根据应用的需求进行设置。每个批次的数据都被封装成一个RDD,RDD是Spark的核心数据结构,表示一个不可变的分布式数据集。
  • 数据处理:Spark Streaming对每个批次的RDD进行转换和输出操作,实现对流数据的处理和分析。转换操作可以使用Spark Core提供的各种函数,如map、reduce、join等,也可以使用Spark Streaming提供的一些特殊函数,如window、updateStateByKey等。输出操作可以将处理结果保存到外部系统中,如HDFS、数据库等。
  • 数据输出:Spark Streaming将处理结果以DStream的形式输出,DStream是一系列连续的RDD组成的序列,表示一个离散化的数据流。DStream可以被进一步转换或输出到其他系统中。

DStream有状态转换操作是指在Spark Streaming中,对DStream进行一些基于历史数据或中间结果的转换,从而得到一个新的DStream。
在这里插入图片描述

二、使用步骤

1.引入库

ThisBuild / version := "0.1.0-SNAPSHOT"ThisBuild / scalaVersion := "2.13.11"lazy val root = (project in file(".")).settings(name := "SparkLearning",idePackagePrefix := Some("cn.lh.spark"),libraryDependencies += "org.apache.spark" %% "spark-sql" % "3.4.1",libraryDependencies += "org.apache.spark" %% "spark-core" % "3.4.1",libraryDependencies += "org.apache.hadoop" % "hadoop-auth" % "3.3.6",libraryDependencies += "org.apache.spark" %% "spark-streaming" % "3.4.1",libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka-0-10" % "3.4.1",libraryDependencies += "org.apache.spark" %% "spark-mllib" % "3.4.1" % "provided",libraryDependencies += "mysql" % "mysql-connector-java" % "8.0.30"
)

2.开发代码

为了实现通过spark Streaming 监控控制台输入,需要开发两个代码:

  • NetworkWordCountStatefultoMysql.scala
  • StreamingSaveMySQL8.scala

NetworkWordCountStatefultoMysql.scala

package cn.lh.spark  import org.apache.spark.SparkConf  
import org.apache.spark.streaming.{Seconds, StreamingContext}  
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}  object NetworkWordCountStatefultoMysql {  def main(args: Array[String]): Unit = {  //    定义状态更新函数  val updateFunc = (values: Seq[Int], state: Option[Int]) => {  val currentCount = values.foldLeft(0)(_ + _)  val previousCount = state.getOrElse(0)  Some(currentCount + previousCount)  }  //    设置log4j日志级别  StreamingExamples.setStreamingLogLevels()  val conf: SparkConf = new SparkConf().setAppName("NetworkCountStateful").setMaster("local[2]")  val scc: StreamingContext = new StreamingContext(conf, Seconds(5))  //    设置检查点,具有容错机制  scc.checkpoint("F:\\niit\\2023\\2023_2\\Spark\\codes\\checkpoint")  val lines: ReceiverInputDStream[String] = scc.socketTextStream("192.168.137.110", 9999)  val words: DStream[String] = lines.flatMap(_.split(" "))  val wordDstream: DStream[(String, Int)] = words.map(x => (x, 1))  val stateDstream: DStream[(String, Int)] = wordDstream.updateStateByKey[Int](updateFunc)  // 打印出状态  stateDstream.print()  // 将统计结果保存到MySQL中  stateDstream.foreachRDD(rdd =>{  val repartitionedRDD = rdd.repartition(3)  repartitionedRDD.foreachPartition(StreamingSaveMySQL8.writeToMySQL)  })  scc.start()  scc.awaitTermination()  scc.stop()  }  }

StreamingSaveMySQL8.scala

package cn.lh.spark  import java.sql.DriverManager  object StreamingSaveMySQL8 {  // 定义写入 MySQL 的函数  def writeToMySQL(iter: Iterator[(String,Int)]): Unit = {  // 保存到MySQL  val ip = "192.168.137.110"  val port = "3306"  val db = "sparklearning"  val username = "lh"  val pwd = "Lh123456!"  val jdbcurl = s"jdbc:mysql://$ip:$port/$db"  val conn = DriverManager.getConnection(jdbcurl, username, pwd)  val statement = conn.prepareStatement("INSERT INTO wordcount (word,count) VALUES (?,?)")  try {  // 写入数据  iter.foreach { wc =>  statement.setString(1, wc._1.trim)  statement.setInt(2, wc._2.toInt)  statement.executeUpdate()  }  } catch {  case e:Exception => e.printStackTrace()  } finally {  if(statement != null){  statement.close()  }  if(conn!=null){  conn.close()  }  }  }  }

运行测试

准备工作:

  1. 提前在mysql中新建数据表保存Spark Streaming写入的数据
    在这里插入图片描述

  2. 启动nc -lk 9999
    在这里插入图片描述

  3. 启动 NetworkWordCountStatefultoMysql.scala
    ![[Pasted image 20230804214904.png]]在这里插入图片描述

  4. 在nc端口输入字符,再分别到idea控制台和MySQL检查结果

在这里插入图片描述


总结

本次实验通过IDEA基于Spark Streaming 3.4.1开发程序监控套接字流,并统计字符串,实现实时统计单词出现的数量。试验成功,相对简单。
后期改善点如下:

  • 通过配置文件读取mysql数据库相应的配置信息,不要写死在代码里
  • 写入数据时,sql语句【插入的表信息】,可以在调用方法时,当作参数输入
  • iter: Iterator[(String,Int)] 应用泛型
  • 插入表时,自动保存插入时间

欢迎各位开发者一同改进代码,有问题有疑问提出来交流。谢谢!


http://www.ppmy.cn/news/1004782.html

相关文章

数据结构--图的遍历 DFS

数据结构–图的遍历 DFS 树的深度优先遍历 //树的先根遍历 void PreOrder(TreeNode *R) {if(R ! NULL){visit(R); //访问根节点while(R还有下一个子树T)PreOrder(T);//先根遍历下一棵子树} }图的深度优先遍历 bool visited [MAX_VERTEX_NUM]; //访问标记数组 void DFS(Grap…

Sprint Boot学习路线6

测试 Spring提供了一组测试工具,可以轻松地测试Spring应用程序的各个组件,包括控制器、服务、存储库和其他组件。它具有丰富的测试注释、实用程序类和其他功能,以帮助进行单元测试、集成测试等。 JPA测试 Spring JPA(Java Pers…

python中*与**的使用

文章目录 前言一、*与**在函数定义时二、*与**在函数调用时 前言 在python中*与**的使用要区分是在函数定义时还是在函数调用时。 一、*与**在函数定义时 def deng(*args,**kwargs):print(args)print(kwargs)deng(1,2,3,a 4,b 5)在函数定义时参数前面使用*,代表…

springboot-mybatis的增删改查

目录 一、准备工作 二、常用配置 三、尝试 四、增删改查 1、增加 2、删除 3、修改 4、查询 五、XML的映射方法 一、准备工作 实施前的准备工作: 准备数据库表 创建一个新的springboot工程,选择引入对应的起步依赖(mybatis、mysql驱动…

跨境电商的广告推广怎么做?7个方法

在跨境电商竞争日趋激烈的市场环境下,跨境电商店铺引流成了制胜关键点。这里给大家分享一套引流推广的方法。 一、搜索引擎营销推广 搜索引擎有两个最大的优点是更灵活、更准确。搜索引擎营销的目标定位更精确,且不受时间和地理位置上的限制&#xff0…

蒸散发与植被总初级生产力估算

目标 熟悉蒸散发ET及其组分(植被蒸腾Ec、土壤蒸发Es、冠层截留Ei)、植被总初级生产力GPP的概念和碳水耦合的基本原理;掌握利用Python与ArcGIS工具进行课程相关的操作;熟练掌握国际上流行的Penman-Monteith模型,并能够…

大数据Flink(五十五):Flink架构体系

文章目录 Flink架构体系 一、 Flink中的重要角色 二、Flink数据流编程模型 三、Libraries支持

AWS多账户单点登录 IAM Identity Center(AWS SSO)

需求场景 多个aws账户,登陆麻烦且不安全,SSO单点功能并且外部身份提供者 — 如果您要管理外部身份提供者(IdP)(例如 Okta 或 Active Directory)中的用户。 官方文档:https://docs.aws.amazon.c…