数据结构--图的遍历 DFS

news/2025/1/1 9:40:01/

数据结构–图的遍历 DFS

树的深度优先遍历

//树的先根遍历
void PreOrder(TreeNode *R)
{if(R != NULL){visit(R);   //访问根节点while(R还有下一个子树T)PreOrder(T);//先根遍历下一棵子树}
}

图的深度优先遍历

bool visited [MAX_VERTEX_NUM];   //访问标记数组
void DFS(Graph G, int v) //从顶点v出发,深度优先遍历图
{visit(v);//访问顶点visited[v] = TRUE; //设已访问标记{for(w = FirstNeighbor(G, v); w >= 0; w = NextNeighor(G, v, w))if(!visited[w]) //w为u的尚未访问的邻接顶点DFS(G, w);}
}

如果是⾮连通图,则⽆法遍历完所有结点

bool visited[MAX_VERTEX_NUM];   //访问标记数组void DFSTraverse(Graph G)//对图G进行深度优先遍历
{for(v = 0; v < G.vexnum; ++v)visited[v] = FALSE;//初始化已访问标记数据for(v = 0; v < G.vexnum; ++v)if(!visited[v])DFS(G, v);//本代码中是从v=0开始遍历
}void DFS(Graph G, int v) //从顶点v出发,深度优先遍历图G
{visit(v);//访问顶点vvisited[v] = TRUE; //设已访问标记for(w = FirstNeighbor(G, v); w >= 0; w = NextNeighor(G, v, w))if(!visited[w]) //w为u的尚未访问的邻接顶点DFS(G,w);
}

复杂度分析

空间复杂度:来⾃函数调⽤栈,最坏情况,递归深度为 O ( ∣ V ∣ ) \color{red}空间复杂度:来⾃函数调⽤栈,最坏情况,递归深度为O(|V|) 空间复杂度:来函数调栈,最坏情况,递归深度为O(V)

空间复杂度:最好情况, O ( 1 ) \color{purple}空间复杂度:最好情况,O(1) 空间复杂度:最好情况,O(1)

时间复杂度=访问各结点所需时间+探索各条边所需时间

邻接矩阵 \color{red}邻接矩阵 邻接矩阵存储的图:
访问 |V| 个顶点需要O(|V|)的时间
查找每个顶点的邻接点都需要O(|V|)的时间,⽽总共有|V|个顶点
时间复杂度= O ( ∣ V ∣ 2 ) \color{red}O(|V|^2) O(V2)

邻接表 \color{red}邻接表 邻接表存储的图:
访问 |V| 个顶点需要O(|V|)的时间
查找各个顶点的邻接点共需要O(|E|)的时间,
时间复杂度= O ( ∣ V ∣ + ∣ E ∣ ) \color{red}O(|V|+|E|) O(V+E)

注:
同⼀个图的 邻接矩阵 \color{red}邻接矩阵 邻接矩阵表示⽅式 唯⼀ \color{red}唯⼀ ,因此 深度优先遍历序列唯⼀ \color{red}深度优先遍历序列唯⼀ 深度优先遍历序列唯
同⼀个图 邻接表 \color{red}邻接表 邻接表表示⽅式 不唯⼀ \color{red}不唯⼀ 不唯,因此 深度优先遍历序列不唯⼀ \color{red}深度优先遍历序列不唯⼀ 深度优先遍历序列不唯

深度优先⽣成树

同⼀个图的邻接矩阵表示⽅式唯⼀,因此深度优先遍历序列唯⼀,深度优先⽣成树也唯⼀
同⼀个图邻接表表示⽅式不唯⼀,因此深度优先遍历序列不唯⼀,深度优先⽣成树也不唯⼀

深度优先⽣成森林

图的遍历与图的连通性

⽆向图 \color{red}⽆向图 向图进⾏BFS/DFS遍历
调⽤BFS/DFS函数的次数=连通分量数

对于 连通图 \color{red}连通图 连通图,只需调⽤1次 BFS/DFS

有向图 \color{red}有向图 有向图进⾏BFS/DFS遍历
调⽤BFS/DFS函数的次数要具体问题具体分析

若起始顶点到其他各顶点都有路径,则只需调⽤1次
BFS/DFS 函数

对于 强连通图 \color{red}强连通图 强连通图,从任⼀结点出发都只需调⽤1次 BFS/DFS

知识回顾与重要考点


http://www.ppmy.cn/news/1004781.html

相关文章

Sprint Boot学习路线6

测试 Spring提供了一组测试工具&#xff0c;可以轻松地测试Spring应用程序的各个组件&#xff0c;包括控制器、服务、存储库和其他组件。它具有丰富的测试注释、实用程序类和其他功能&#xff0c;以帮助进行单元测试、集成测试等。 JPA测试 Spring JPA&#xff08;Java Pers…

python中*与**的使用

文章目录 前言一、*与**在函数定义时二、*与**在函数调用时 前言 在python中*与**的使用要区分是在函数定义时还是在函数调用时。 一、*与**在函数定义时 def deng(*args,**kwargs):print(args)print(kwargs)deng(1,2,3,a 4,b 5)在函数定义时参数前面使用*&#xff0c;代表…

springboot-mybatis的增删改查

目录 一、准备工作 二、常用配置 三、尝试 四、增删改查 1、增加 2、删除 3、修改 4、查询 五、XML的映射方法 一、准备工作 实施前的准备工作&#xff1a; 准备数据库表 创建一个新的springboot工程&#xff0c;选择引入对应的起步依赖&#xff08;mybatis、mysql驱动…

跨境电商的广告推广怎么做?7个方法

在跨境电商竞争日趋激烈的市场环境下&#xff0c;跨境电商店铺引流成了制胜关键点。这里给大家分享一套引流推广的方法。 一、搜索引擎营销推广 搜索引擎有两个最大的优点是更灵活、更准确。搜索引擎营销的目标定位更精确&#xff0c;且不受时间和地理位置上的限制&#xff0…

蒸散发与植被总初级生产力估算

目标 熟悉蒸散发ET及其组分&#xff08;植被蒸腾Ec、土壤蒸发Es、冠层截留Ei&#xff09;、植被总初级生产力GPP的概念和碳水耦合的基本原理&#xff1b;掌握利用Python与ArcGIS工具进行课程相关的操作&#xff1b;熟练掌握国际上流行的Penman-Monteith模型&#xff0c;并能够…

大数据Flink(五十五):Flink架构体系

文章目录 Flink架构体系 一、 Flink中的重要角色 二、Flink数据流编程模型 三、Libraries支持

AWS多账户单点登录 IAM Identity Center(AWS SSO)

需求场景 多个aws账户&#xff0c;登陆麻烦且不安全&#xff0c;SSO单点功能并且外部身份提供者 — 如果您要管理外部身份提供者&#xff08;IdP&#xff09;&#xff08;例如 Okta 或 Active Directory&#xff09;中的用户。 官方文档&#xff1a;https://docs.aws.amazon.c…

AOP获取切点表达式中注解的属性

文章目录 1、获取Cacheable注解的属性2、获取自定义注解的属性 1、获取Cacheable注解的属性 有个小需求&#xff0c;要在日志中打印支持redis缓存的方法的相关信息&#xff0c;这里切点表达式动词用annotation&#xff0c;后面跟Cacheable注解 Component Aspect Slf4j public…