nsqd的架构及源码分析

news/2025/1/11 0:33:50/

文章目录

一  nsq的整体代码结构

二  回顾nsq的整体架构图

三  nsqd进程的作用

四  nsqd启动流程的源码分析

五  本篇博客总结


在博客 nsq整体架构及各个部件作用详解_YZF_Kevin的博客-CSDN博客 中我们讲了nsq的整体框架,各个部件的大致作用。如果没看过的,建议大家去学习下,不然理解后续的内容会有难度

这篇博客开始我们来看下每个部件的详细功能,从源码入手分析其内部实现原理

一  nsq的整体代码结构

建议大家也下载nsq的代码,一边看博客一边看代码印象更深刻。nsq的官方git代码地址:GitHub - nsqio/nsq: A realtime distributed messaging platform

nsq代码结构如下,图中有注释,大家先有个整体印象,知道各个模块的代码在哪就行

二  回顾nsq的整体架构图

 图中最上面的四个节点就是nsqd进程,至少要有1个,可以多开。我们画了4个,分别是nsq1,nsq2,nsq3,nsq4

注意看nsqd的连接关系,每个nsqd节点和所有客户端都有连接(tcp+http),且每个nsqd节点和所有的nsqlookupd节点也有连接(tcp)

三  nsqd进程的作用

1. topic的创建,清空,暂停,重新激活,删除,持久化(保存到文件,从文件加载),同步给nsqlookupd进程

2. channel的创建,清空,暂停,重新激活,删除,持久化(保存到文件,从文件加载),同步给nsqlookupd进程

3. message的监听,中转,持久化(保存到文件,从文件加载),主动推送消息给各个客户端,超时重发,消息计数

4. 配置修改,运行状态(协程、内存)统计

5. 抽检channel的延迟队列,飞行队列,消息超时的重新入队

可以说,nsqd进程是整个nsq平台的核心,消息队列架构简单的话,只有一个nsqd进程就够了。

四  nsqd启动流程的源码分析

nsqd的代码主要在两块

1. 代码框架及main函数,目录在 nsq/apps/nsqd/*

2. 实现代码,目录在 nsq/nsqd/*

值得一提的是nsqd,nsqlookupd,nsqadmin这三个进程的框架都使用了go-svc包,这个包很简单,使用者只需实现它的三个函数即可

Init()           配置,初始化等操作

Start()        真正启动

Stop()        结束时的关闭操作

好了,我们看nsqd的入口,也就是main函数,代码在nsq/apps/nsqd/main.go,代码如下(已加注释)

type program struct {once 		sync.Oncensqd 		*nsqd.NSQD	// nsqd对象
}// nsqd的启动入口
func main() {prg := &program{}// Run内部会调用Init(),Start(),监听到这两个系统信号时会调用Stop()if err := svc.Run(prg, syscall.SIGINT, syscall.SIGTERM); err != nil {logFatal("%s", err)}
}

main()函数内部只有一个对象program,也只有一处调用svc.Run(),这个函数内部会调用program.Init()program.Start()

其中program.Init()函数,主要是创建并检测nsqd的配置,然后根据配置创建出一个nsqd实例

重点在program.Start()函数,代码如下(已加注释)

// nsqd的启动,重点在调用的Main()函数
func (p *program) Start() error {// 加载元数据,并创建初始化出所有的topic对象,所有的channel对象err := p.nsqd.LoadMetadata()if err != nil {logFatal("failed to load metadata - %s", err)}// 再持久化元数据到文件(不要觉得奇怪,因为上面的LoadMetadata()函数可能会过滤掉一些无效的topic,channel,这里再重写算是刷新了元数据)err = p.nsqd.PersistMetadata()if err != nil {logFatal("failed to persist metadata - %s", err)}// 启动一个新协程,专门运行nsqd的Main()循环,注意这个Main()是永不退出的(除非出错)go func() {err := p.nsqd.Main()if err != nil {p.Stop()os.Exit(1)}}()return nil
}

对上面的代码解释下,program.Start()函数一共干了3件事

1. nsqd.LoadMetadata(), 这个函数根据配置加载旧nsqd元数据。这些元数据包含版本号,topic,channel,过滤掉不合法的topic和channel,合法的topic和channel都创建出对象,并且为每个topic建立处理循环

2. nsqd.PersistMetadata(), 把过滤后的topic和channel再保存到文件nsqd.dat,算是把旧数据过滤了一遍

3. 新启动一个协程,调用nsqd.Main(),这个Main()是nsqd的核心,启动了nsqd的全部服务。除非遇到错误,否则永不退出

接下来看nsqd.Main()的内部实现,代码在nsq/nsqd/nsqd.go,代码如下(已加注释)

// nsqd主协程(内部启动tcp循环,http循环,https循环, 扫描队列池,和nsqlookupd循环),永不退出,除非严重错误
func (n *NSQD) Main() error {exitCh := make(chan error)var once sync.Once// 退出函数(独立协程运行,一直监听,遇到错误exitFunc := func(err error) {once.Do(func() {if err != nil {n.logf(LOG_FATAL, "%s", err)}exitCh <- err})}// TCP服务,独立协程n.waitGroup.Wrap(func() {exitFunc(protocol.TCPServer(n.tcpListener, n.tcpServer, n.logf))})// HTTP服务,独立协程if n.httpListener != nil {httpServer := newHTTPServer(n, false, n.getOpts().TLSRequired == TLSRequired)n.waitGroup.Wrap(func() {exitFunc(http_api.Serve(n.httpListener, httpServer, "HTTP", n.logf))})}// HTTPS服务,独立协程if n.httpsListener != nil {httpsServer := newHTTPServer(n, true, true)n.waitGroup.Wrap(func() {exitFunc(http_api.Serve(n.httpsListener, httpsServer, "HTTPS", n.logf))})}// 独立协程,抽检扫描各个队列n.waitGroup.Wrap(n.queueScanLoop)// 独立协程,和nsqlookupd的循环(连接和重连,心跳维持,topic,channel变化通知等)n.waitGroup.Wrap(n.lookupLoop)if n.getOpts().StatsdAddress != "" {n.waitGroup.Wrap(n.statsdLoop)}err := <-exitChreturn err
}

对上面的代码解释下,nsqd.Main()主要干了6件事

1. 开一个新协程,启动tcp服务并一直监听,为客户端一共tcp服务。我们的客户端最常用,因为生产消息,中转消息,处理消息都是这里实现的

2. 开一个新协程,启动http服务并一直监听,为客户端提供htttp服务

3. 开一个新协程,启动https服务并一直监听,为客户端提供htttps服务

4. 开一个新协程,建立并维持扫描池,这些扫描协程会扫描所有channel的延迟队列,飞行队列,如果消息超时了就重新入队。很有意思的是,nsqd作者很大方地承认他抄袭了redis的抽检策略,内部实现也确实是类redis操作,这个我们后面再讲,todo

5. 开一个新协程,和nsqlookupd建立循环,主要是连接和重连,心跳维持,实时报告自己的topic和channel变化

6. 开一个新协程,做统计操作,统计topic,channel,消息,内存,GC等等

五  本篇博客总结

1. 给大家看了nsq平台下代码整体结构,建议大家下载源码自己看下,加强印象

2. 讲了nsqd进程提供的功能实现

3. 跟踪了nsqd进程启动流程,最核心的nsqd.Main()建议大家仔细看,后面讲的nsqd内容也都是这几个协程里面干的活

下一篇博客我们讲nsqd内部各个协程的工作

todo


http://www.ppmy.cn/news/1003903.html

相关文章

iOS——Block循环引用

Capturing ‘self’ strongly in this block is likely to lead to a retain cycle 典型的循环引用 self持有了blockblock持有了self(self.name) 这样就形成了self -> block -> self的循环引用 解决办法 强弱共舞 使用 中介者模式 __weak typeof(self) weakSelf sel…

docker:如何传环境变量给entrypoint

使用shell,不带中括号 ENTRYPOINT .\main -web -c $CONFIGENTRYPOINT [sh, -c, ".\main -web -c $CONFIG"]docker build --build-arg ENVIROMENTintegration // 覆盖ENTRYPOINT命令 使用shell脚本 ENTRYPOINT ["./entrypoint.sh"]entrypoint.sh 镜像是a…

拓展商业视野:利用企业变更记录 API 剖析企业策略与决策

引言 随着商业竞争日益激烈&#xff0c;企业的战略与决策成为成功与否的关键因素。在这样的背景下&#xff0c;利用变更记录查询API成为了企业洞察竞争对手、揭示市场动态、发现商业机会的重要工具。本文将深入探讨变更记录查询API的应用&#xff0c;揭示它如何拓展商业视野&a…

决策树与随机森林

目录 决策树是&#xff1a;Why&#xff1a;How&#xff1a;基本概念决策树生成举例决策树缺点参考 Demo 随机森林1.是&#xff1a;2.Why&#xff1a;3.How&#xff1a;参考 Demo 决策树 是&#xff1a; 1.一种有监督的分类&#xff08;或预测&#xff09;算法。 2.利用属性、…

Ajax请求中的async:false和async:true的差异

async&#xff1a;false 是同步调用&#xff0c;Ajax命令发出后&#xff0c;程序会暂停&#xff0c;直到调用完毕返回信息后才会继续往下运行&#xff0c;如果调用长时间未结束&#xff0c;则程序会呈现一种假死的状态&#xff1b; async&#xff1a;true&#xff08;默认&…

GD32F103VET输出PWM波形

GD32F103VET将TIMER0_CH3映射到PE14引脚&#xff0c;使其输出PWM波形。测试时&#xff0c;使用示波器看PE14引脚输出的波形&#xff0c;效果更直观。 TIMER0之PWM输出引脚映射如下: TIMER0_REMAP[1:0]"00"(没有映射): TIMER0_CH0默认被映射到PA8引脚 TIMER0_CH1默认…

P5732 【深基5.习7】杨辉三角

题目描述 给出 n ( n ≤ 20 ) n(n\le20) n(n≤20)&#xff0c;输出杨辉三角的前 n n n 行。 如果你不知道什么是杨辉三角&#xff0c;可以观察样例找找规律。 输入格式 输出格式 样例 #1 样例输入 #1 6样例输出 #1 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 11.题目…

小目标检测(4)——代码学习C++复习

文章目录 引言正文typedef struct __msgqueue msgqueue_t;void *head和void **get_head并发编程中的阻塞模式和非阻塞模式 总结引用 引言 之前很少用c,最多就用来进行刷题&#xff0c;并未接触过工程方面的应用。现在因为项目原因&#xff0c;又一次接触了工程上面的编程方式&…