深入浅出:你需要了解的用户数据报协议(UDP)

embedded/2024/9/20 7:24:15/ 标签: udp, 网络协议, 网络

文章目录

      • **UDP概述**
        • **1. 无连接性**
        • **2. 尽最大努力交付**
        • **3. 面向报文**
        • **4. 多种交互通信支持**
        • **5. 较少的首部开销**
      • **UDP报文的首部格式**
        • **详细解释每个字段**
      • **UDP的多路分用模型**
        • **多路分用的实际应用**
      • **检验和的计算方法**
        • **伪首部的详细内容**
        • **检验和计算步骤**
      • **实际应用中的UDP**
        • **1. 实时视频流**
        • **2. 在线游戏**
        • **3. 物联网(IoT)**
      • **UDP的局限性**
      • **如何提高UDP的可靠性**
      • **总结**

用户数据报协议(UDP)是互联网协议套件中的一种协议,它在IP层之上增加了一些有限的功能,如端口功能和差错检测功能。虽然UDP用户数据报只能提供不可靠的交付,但它在某些方面有其特殊的优点。本文将带你深入了解UDP的基本概念、优点、报文结构以及多路分用模型。无论你是网络新手还是想要巩固基础知识,这篇文章都能让你对UDP有一个清晰的认识。

UDP概述

1. 无连接性

UDP是无连接的,即发送数据之前不需要建立连接,这样可以减少开销和发送数据之前的时延。这一特性使得UDP相比于其他协议(如TCP)更加轻量级和高效。举个例子,当你在进行视频通话时,你不希望每次发送数据都需要先建立一个连接,这样会增加延迟,影响通话质量。

2. 尽最大努力交付

UDP使用尽最大努力交付,即不保证可靠交付,同时也不使用流量控制和拥塞控制。因此,主机不需要维持复杂的连接状态表。这对于某些应用来说非常重要,例如实时应用(如IP电话、实时视频会议等) ,这些应用要求以恒定速率发送数据,并且允许在网络发生拥塞时丢失一些数据。比如在IP电话中,一些数据包的丢失并不会显著影响通话质量,但延迟的增加却会。

3. 面向报文

UDP是面向报文的,也就是说,应用程序交给UDP一个报文,UDP就发送这个报文;而UDP收到一个报文,就把它交付应用程序。应用程序需要选择合适大小的报文,以避免在IP层传输时效率降低。举个例子,如果你发送的报文太长,IP层在传送时可能要进行分片,这会降低效率;如果报文太短,IP数据报的首部相对太大,也会降低效率。

4. 多种交互通信支持

UDP支持多种交互通信模式,包括一对一、一对多、多对一和多对多的交互通信,使其在多种场景下都能灵活应用。例如,在多人视频会议中,UDP可以支持多个用户同时发送和接收数据,从而实现高效的多方通信。

5. 较少的首部开销

UDP首部只有8字节的开销,相比于TCP的20字节首部,这大大减少了数据传输的负担。对于需要频繁发送小数据包的应用,如在线游戏,这种减少开销的特性尤其重要。

UDP报文的首部格式

UDP用户数据报由两个部分组成:数据部分和首部。首部非常简单,只有8字节,由四个字段组成,每个字段都是2字节。这些字段包括源端口、目的端口、长度和检验和。

  • 源端口:标识发送方的端口号。
  • 目的端口:标识接收方的端口号。
  • 长度:UDP用户数据报的总长度。
  • 检验和:用于差错检测,防止数据报在传输中出错。
详细解释每个字段
  1. 源端口:这是发送方的端口号,用于标识数据报的发送来源。例如,在一场在线游戏中,游戏服务器的端口号就是源端口。
  2. 目的端口:这是接收方的端口号,用于标识数据报的接收目的地。例如,在同一场在线游戏中,玩家的端口号就是目的端口。
  3. 长度:这是UDP用户数据报的总长度,包括首部和数据部分。这个字段确保接收方知道接收到的数据报的确切大小。
  4. 检验和:这是一个差错检测码,用于验证数据报在传输过程中是否出错。如果检验和验证失败,数据报将被丢弃。

UDP的多路分用模型

UDP的多路分用模型如图所示。一个UDP端口与一个报文队列(缓存)关联,UDP根据目的端口号将到达的报文加到对应的队列中。应用进程根据需要从端口对应的队列中读取整个报文。需要注意的是,端口队列中的所有报文的目的IP地址和目的端口号相同,但源IP地址和源端口号可能不同。

多路分用的实际应用

在一个视频流应用中,不同的视频源(比如多个摄像头)可能发送数据到同一个服务器端口。服务器通过端口号将数据分配到不同的队列,然后应用程序从这些队列中读取数据进行处理。这样可以确保数据的有序和准确交付。

检验和的计算方法

UDP报文首部中的检验和计算方法有些特殊。在计算检验和时,要在UDP用户数据报之前增加12字节的伪首部。伪首部并不是UDP用户数据报真正的首部,仅在计算检验和时临时使用。通过这种方法,可以防止报文被意外地交付到错误的目的地。

伪首部的详细内容

伪首部包括以下字段:

  1. 源IP地址:发送方的IP地址。
  2. 目的IP地址:接收方的IP地址。
  3. 全零字段:用于填充。
  4. 协议字段:表示使用的协议类型,对于UDP,该值为17。
  5. UDP长度:UDP用户数据报的总长度。
检验和计算步骤
  1. 发送方先将检验和字段置为全零。
  2. 将伪首部及UDP用户数据报看作由多个16位的字串组成。
  3. 如果UDP用户数据报的数据部分不是偶数个字节,则填入一个全零字节(但此字节不发送)。
  4. 按二进制反码计算这些16位字串的和。
  5. 将此和的二进制反码写入检验和字段。
  6. 发送这样的UDP用户数据报。

接收方会将收到的UDP用户数据报和伪首部(以及可能的填充全零字节)放在一起,再按二进制反码求这些16位字的和。当无差错时其结果应为全1,否则表明有差错出现,接收方就应丢弃该数据报(也可以上交应用层,附上出现差错的警告)。

实际应用中的UDP

1. 实时视频流

在实时视频流应用中,如YouTube直播或Twitch,UDP的低延迟特性尤为重要。实时视频流要求数据快速传输,即使丢失少量数据也不会显著影响用户体验。UDP可以在网络拥塞时迅速恢复,而无需等待重传确认。

2. 在线游戏

在线游戏同样依赖UDP的快速传输和低延迟特性。在多人在线游戏中,玩家的动作需要实时同步,即使丢失少量数据包,也不应影响游戏的流畅性。UDP能确保游戏中的数据传输迅速而无阻碍。

3. 物联网(IoT)

在物联网设备之间的通信中,UDP也被广泛使用。许多物联网设备需要定期发送状态更新或数据,这些数据通常很小且对延迟敏感。UDP的低开销和快速传输特性使其成为物联网通信的理想选择。

UDP的局限性

虽然UDP在许多应用中表现出色,但它也有一些局限性。由于缺乏流量控制和拥塞控制,网络拥塞时可能会导致数据丢失。此外,UDP不保证数据包的顺序和完整性,因此在需要高度可靠的应用中,TCP可能是更好的选择。

如何提高UDP的可靠性

尽管UDP本身不提供可靠性保证,但应用层可以通过一些手段来提高其可靠性。例如,前向纠错(FEC)和重传机制可以在不影响实时性的情况下减少数据丢失。应用进程可以在发送数据时加入冗余信息,接收方可以利用这些冗余信息来纠正错误或重建丢失的数据。

总结

UDP作为一种无连接的传输层协议,虽然不保证可靠交付,但在实时应用和要求低延迟的场景中具有明显优势。理解UDP的工作原理和优点有助于在实际应用中更好地选择合适的传输协议。希望通过本文,你对UDP有了更深入的了解,并能在未来的网络应用中灵活运用UDP。


以上就是对UDP的全面解析,希望这篇文章能够帮助你更好地理解和掌握用户数据报协议。无论是理论学习还是实际应用,掌握这些基础知识都是非常重要的。如果你有任何疑问或需要进一步了解的内容,欢迎在评论区留言,我们一起讨论交流!

图文来源:《计算机网络教程》第六版微课版


http://www.ppmy.cn/embedded/97269.html

相关文章

Java面试题———RabbitMQ篇

目录 1.你们项目中哪里用到了RabbitMQ 2、为什么会选择使用RabbitMQ 3、使用RabbitMQ如何保证消息不丢失 4、消息的重复消费问题如何解决的 5、如何解决消息堆积在MQ的问题 6、RabbitMQ如何保证消费的顺序性 7、RabbitMQ的延迟队列有了解过嘛 8、RabbitMQ如何设置消息过…

操作DOM和事件处理:与用户交互

在现代网页开发中,与用户交互是至关重要的一部分。通过操作DOM元素和处理用户事件,我们可以让网页变得更加动态和响应。本文将通过一个制作动态待办事项列表的案例,帮助你掌握DOM选择器、事件监听器和事件处理的基本知识。 任务目标 通过本教程,你将学习并掌握: 使用DOM…

CentOS 7安装流程详细教程

CentOS 7安装流程详细教程 CentOS(Community Enterprise Operating System)是基于Red Hat Enterprise Linux(RHEL)源代码重新编译而成的免费开源操作系统,广泛用于服务器和企业环境。由于其稳定性和兼容性&#xff0c…

Eureka入门指南:微服务注册与发现的基础概念

Eureka入门指南:微服务注册与发现的基础概念 引言 随着微服务架构的普及,微服务之间的高效通信和管理成为了开发和运维的核心挑战之一。为了解决服务发现和管理问题,Netflix推出了Eureka,一个功能强大的服务注册和发现工具。Eur…

【区块链+金融服务】企链通金融服务平台 | FISCO BCOS应用案例

据供应链行业观察不完全统计,2021 年共有 93 家各类供应链金融平台上线、启动、落地首笔业务或完成系统招 标。为适应跟上供应链金融行业的发展,深圳市企企通科技有限公司积极响应国家政策,为企业引入基于 FISCO BCOS 区块链技术的供应链金融…

QT中Charts基本用法

QT中Charts基本用法 第一步:创建工程,添加Charts库 第二步:添加charts视图 注意要打上对钩 第三步:添加所需成员 第四步:编写初始化函数 第五步:添加测试数据

Spring中SimpleJndiBeanFactory

SimpleJndiBeanFactory 是 Spring Framework 早期版本中的一个类,用于提供对 JNDI(Java Naming and Directory Interface)资源的简单访问。JNDI 是 Java EE 中的一个标准 API,允许 Java 应用程序访问命名和目录服务,如…

Mongodb、redis、mysql、mssql、oracle、PostgreSQL服务简介和默认运行端口

MongoDB 简介: MongoDB 是一个开源的 NoSQL 文档数据库,使用类似 JSON 的 BSON 格式存储数据。它是一个高性能、高可用、自动伸缩的分布式数据库。默认端口: 27017 Redis 简介: Redis 是一个开源的内存数据库,常用作缓存和消息队列代理。它支持多种数据结构,如字符串、哈希、列…

★ C++基础篇 ★ vector 类

Ciallo&#xff5e;(∠・ω< )⌒☆ ~ 今天&#xff0c;我将继续和大家一起学习C基础篇第六章----vector类 ~ 目录 一 vector的介绍及使用 1.1 vector的介绍 1.2 vector的使用 1.2.1 vector的定义 1.2.2 vector iterator 的使用 1.2.3 vector 空间增长问题 1.2.4 vecto…

Etcd:分布式键值存储的基石

Etcd 是一个分布式的、一致性的键值存储系统&#xff0c;由 CoreOS 设计并开源。它主要用于共享配置和服务发现&#xff0c;并且被广泛应用于 Kubernetes、Docker 和其他云原生工具中作为核心组件之一。Etcd 使用 Raft 一致性算法来保证数据的一致性&#xff0c;使得它非常适合…

C语言 | Leetcode C语言题解之第347题前K个高频元素

题目&#xff1a; 题解&#xff1a; struct hash_table {int key;int val;// 查看 https://troydhanson.github.io/uthash/ 了解更多UT_hash_handle hh; };typedef struct hash_table* hash_ptr;struct pair {int first;int second; };void swap(struct pair* a, struct pair*…

NFS实现多服务器文件的共享

文章目录 一、简介二、部署1、准备1、服务端和客户端&#xff1a;安装nfs-utils2、服务端&#xff1a;创建共享目录3、服务端&#xff1a;配置exports文件4、客户端挂载5、客户端&#xff1a;卸载 三、附录1、NFS服务基本命令2、/etc/exports参数解释3、exportfs命令 参考资料 …

IP SSL证书快速申请教程

在互联网安全领域中&#xff0c;SSL证书是比较普遍的传输数据加密方式之一。SSL证书通过建立加密通道&#xff0c;确保客户端与服务器之间传输的数据不被第三方窃取或篡改。而大多数SSL证书&#xff0c;如单域名SSL证书、多域名SSL证书以及通配符SSL证书&#xff0c;在申请时必…

【源码+文档+调试讲解】健美操评分系统

摘 要 健美操评分系统采用B/S架构&#xff0c;数据库是MySQL。系统的搭建与开发采用了先进的JAVA进行编写&#xff0c;使用了springboot框架。该系统从三个对象&#xff1a;由管理员、裁判员和用户来对系统进行设计构建。主要功能包括首页&#xff0c;个人中心&#xff0c;裁判…

反射型XSS的几种payload

目录 第一种&#xff1a;采用的是urlcode编码 第二种&#xff1a;前面用html实体编码&#xff0c;后面用urlcode编码 第三种&#xff1a;只对&#xff1a;使用urlcode编码 第四种&#xff1a;对<>进行html实体编码 第五种&#xff1a;textarea 第六种&#xff1a;和…

【Python】nn.Conv1、2、3d()函数详解和示例

前言 在深度学习中&#xff0c;‌卷积神经网络&#xff08;‌Convolutional Neural Networks, CNNs&#xff09;‌是一种非常强大的模型&#xff0c;‌广泛应用于图像识别、‌自然语言处理、‌视频分析等领域。‌PyTorch 提供了 nn.Conv1d、‌nn.Conv2d 和 nn.Conv3d 三个类&a…

详解Element-UI el-table表格中勾选checkbox(selection)多选删除

本节讲解的是关于组件库中el-table组件多选删除功能的实现。 1.Vue文件内的引用 2.页面数据 3.存储多选数据 4. 处理多选数据 这里通过循环的方式找到数据并对数据删除&#xff0c;这种方式易于理解&#xff0c;但不一定是最优方案

c++学习

关键字 continue continue 关键字用于控制循环语句的执行流程。当continue 语句被执行时&#xff0c;它会跳过当前循环迭代中剩余的代码&#xff0c;并立即开始下一次迭代。continue 通常用于 for、while 和 do-while 循环中。 #include <iostream> using namespace s…

深入理解逻辑回归

深入理解逻辑回归 文章目录 深入理解逻辑回归什么是逻辑回归&#xff1f;Sigmoid 函数几率&#xff08;Odds&#xff09;与对数几率&#xff08;Logit&#xff09;函数为什么使用对数几率函数&#xff1f;总结 逻辑回归&#xff08;Logistic Regression&#xff09;是机器学习和…

遥感之常用各种指数总结大全

目前在遥感领域基本各种研究领域都会用到各种各样的指数&#xff0c;如水体指数&#xff0c;植被指数&#xff0c;农业长势指数&#xff0c;盐分指数&#xff0c;云指数&#xff0c;阴影指数&#xff0c;建筑物指数&#xff0c;水质指数&#xff0c;干旱指数等等众多。 本文对上…