FFmpeg音频重采样基本流程

embedded/2024/9/24 17:33:14/

目录

    • 流程概述
    • 用到的API
    • tips
    • demo样例
    • 附录 - SwrContext结构体字段

流程概述

音频重采样的基本流程为:

  1. 申请重采样器上下文
  2. 设置重采样去上下文的参数
  3. 初始化重采样器
  4. 申请数据存放的缓冲区空间
  5. 进行重采样

注意,要先设置参数再对重采样器初始化

用到的API

  1. SwrContext重采样器上下文的结构体。此结构是不透明的,这意味着,如果要设置选项,诸如av_opt_set等函数来设置。

  2. struct SwrContext *swr_alloc();,申请重采样器上下文。

  3. int av_opt_set(void *obj, const char *name, const char *val, int search_flags);
    int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags);
    int av_opt_set_chlayout(void *obj, const char *name, const AVChannelLayout *layout, int search_flags);
    av_opt_set* 函数簇,这里仅列举几个。以av_opt_set为例,用于将给定name的obj字段设置为指定的val。第一个void* 的obj参数表示要设置的对象,第二个name参数表示要设置的字段名称,以字符串形式传入。例如obj为SwrContext* 对象,name为"in_sample_rate"就对应着SwrContext中的同名字段。中间的部分就为要设置的参数,最后的search_flags表示搜索搜索标志,一般设为0即可。

  4. int swr_alloc_set_opts2(struct SwrContext **ps, const AVChannelLayout *out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate, const AVChannelLayout *in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate, int log_offset, void *log_ctx);如果还未分配则分配SwrContext,并设置/重置公共参数。就相当于alloc + set。

  5. int swr_init(struct SwrContext *s);重采样去初始化。必须在设置过SwrContext 参数之后初始化。

  6. int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd)int64_t av_rescale(int64_t a, int64_t b, int64_t c)都是用于计算的(a*b/c),唯一的区别在于rnd可以设置向上取整向下取整等。

  7. int av_samples_alloc_array_and_samples(uint8_t ***audio_data, int *linesize, int nb_channels, int nb_samples, enum AVSampleFormat sample_fmt, int align);
    申请一个 data[nb_channels][ch_data] 的二维数组,所以audio_data要作为一个三级指针传进去。

  8. void av_freep(void *ptr);释放av_samples_alloc_array_and_samples申请的data。av_freep即使传入null也是安全的。用法示例:

    uint8_t *buf = av_malloc(16);
    av_freep(&buf);
    
  9. int64_t swr_get_delay(struct SwrContext *s, int64_t base);获取下一个输入样本相对于下一个输出样本所经历的延迟帧数。

  10. int swr_convert(struct SwrContext *s, uint8_t * const *out, int out_count, const uint8_t * const *in , int in_count);
    音频重采样,in和out是由av_samples_alloc_array_and_samples生成的data缓冲区。in_count和out_count则是对应的缓冲区大小的样本数。

  11. int av_samples_get_buffer_size(int *linesize, int nb_channels, int nb_samples, enum AVSampleFormat sample_fmt, int align);
    获取给定音频参数所需的缓冲区大小。

tips

  1. swr是software resample的缩写
  2. nb_samples样本数,表示每帧的每个通道中的采样点数。
  3. 重采样的三个关键参数:采样率、采样格式、声道布局。
  4. 音频的planner格式的数据是分在多个数组中的,例如左右声道的data[0]中存放L声道的数据,data[1]中存放R声道的数据。而交错模式的数据则是按照LRLR…的顺序统一放到data[0]中的。
  5. av_freep要取地址的原因,是因为要将指针置空,仅此而已。
  6. 老版本的FFmpeg,例如在ffmpeg-4.2下,音频声道数只是一个单一的int型字段。而新版本的FFmpeg,以ffmpeg-7.0为例,则是将音频数据封装为一个AVChannelLayout结构体了。所以在设置 ‘layout’ 字段时,不能再用av_opt_set_int接口,而是要用av_opt_set_chlayout,name参数也要使用"in_chlayout"才行。


demo样例

重采样样例,参考:Examples - resample_audio.c

#include <iostream>
#include <fstream>
#include <string>
#include <cmath>
using namespace std;extern "C"
{
#include <libavutil/opt.h>
#include <libavutil/channel_layout.h>
#include <libavutil/samplefmt.h>
#include <libswresample/swresample.h>
}/* format转字符串 */
string string_sample_fmt(enum AVSampleFormat sample_fmt)
{// 定义sample_fmt_entry结构体,同时定义了一个数组struct sample_fmt_entry{enum AVSampleFormat sample_fmt; const char *fmt_be, *fmt_le;} sample_fmt_entries[] = {{ AV_SAMPLE_FMT_U8,  "u8",    "u8"    },{ AV_SAMPLE_FMT_S16, "s16be", "s16le" },{ AV_SAMPLE_FMT_S32, "s32be", "s32le" },{ AV_SAMPLE_FMT_FLT, "f32be", "f32le" },{ AV_SAMPLE_FMT_DBL, "f64be", "f64le" },};// 返回字符串const char* str_fmt = nullptr;int arr_len = FF_ARRAY_ELEMS(sample_fmt_entries);for (int i = 0; i < arr_len; i++){auto entry = sample_fmt_entries[i];if (sample_fmt == entry.sample_fmt){return AV_NE(entry.fmt_be, entry.fmt_le);}}
}/*** Fill dst buffer with nb_samples, generated starting from t.* 交错模式,函数摘自:https://ffmpeg.org/doxygen/7.0/resample_audio_8c-example.html* sin曲线,t表示当前所在的相位,周期为一帧所持续的时间*/
void fill_samples(double *dst, int nb_samples, int nb_channels, int sample_rate, double *t)
{int i, j;double tincr = 1.0 / sample_rate, *dstp = dst;const double c = 2 * M_PI * 440.0;/* generate sin tone with 440Hz frequency and duplicated channels */for (i = 0; i < nb_samples; i++) {*dstp = sin(c * *t);for (j = 1; j < nb_channels; j++)dstp[j] = dstp[0];dstp += nb_channels;*t += tincr;}
}int main()
{/* 采样参数定义 */// 输入参数int src_sample_rate = 48000;enum AVSampleFormat src_sample_fmt = AV_SAMPLE_FMT_DBL;AVChannelLayout src_ch_layout = AV_CHANNEL_LAYOUT_STEREO; // 立体声// 输出参数int dst_sample_rate = 44100;enum AVSampleFormat dst_sample_fmt = AV_SAMPLE_FMT_S16;AVChannelLayout dst_ch_layout = AV_CHANNEL_LAYOUT_STEREO; // 立体声// 创建重采样器上下文(暂且认为不会失败)SwrContext *swr_ctx = swr_alloc();/* 参数设置(SwrContext字段设置) */// 输入参数check_optset(av_opt_set_int(swr_ctx, "in_sample_rate", src_sample_rate, 0), __LINE__);check_optset(av_opt_set_sample_fmt(swr_ctx, "in_sample_fmt", src_sample_fmt, 0), __LINE__);check_optset(av_opt_set_chlayout(swr_ctx, "in_chlayout", &src_ch_layout, 0), __LINE__);// 输出参数check_optset(av_opt_set_int(swr_ctx, "out_sample_rate", dst_sample_rate, 0), __LINE__);check_optset(av_opt_set_sample_fmt(swr_ctx, "out_sample_fmt", dst_sample_fmt, 0), __LINE__);check_optset(av_opt_set_chlayout(swr_ctx, "out_chlayout", &dst_ch_layout, 0), __LINE__);// 参数设置完成后,初始化上下文swr_init(swr_ctx);// 给输入源分配内存空间uint8_t **src_data = nullptr;int src_linesize;int src_nb_samples = 1024; // 每个通道的样本数av_samples_alloc_array_and_samples(&src_data, &src_linesize, src_ch_layout.nb_channels,src_nb_samples, src_sample_fmt, 0);// 给输出源分配内存空间uint8_t **dst_data;int dst_linesize;// 计算输出的信道样本数:a * b / c,AV_ROUND_UP表示向上取整int dst_nb_samples = av_rescale_rnd(src_nb_samples, dst_sample_rate, src_sample_rate, AV_ROUND_UP);// 分配空间av_samples_alloc_array_and_samples(&dst_data, &dst_linesize, dst_ch_layout.nb_channels,dst_nb_samples, dst_sample_fmt, 0);// 采样转换double t = 0; // 时间,以输入源的时间为基准int max_nb_samples = dst_nb_samples;string dst_file_name = "out.pcm";ofstream dst_file(dst_file_name, ios_base::out | ios_base::binary);while(t < 10){// 生成输入源(模拟)fill_samples((double*)src_data[0], src_nb_samples, src_ch_layout.nb_channels, src_sample_rate, &t);// 获取延迟(dst音频相对src音频延迟的帧数)int64_t delay = swr_get_delay(swr_ctx, src_sample_rate);// 输出的信道样本数,a * b / cdst_nb_samples = av_rescale(delay + src_nb_samples, dst_sample_rate, src_sample_rate);// 如果输出缓冲区大小不够,重新申请空间if(dst_nb_samples > max_nb_samples){// 重新申请空间av_freep(&dst_data[0]);av_samples_alloc(dst_data, &dst_linesize, dst_ch_layout.nb_channels,dst_nb_samples, dst_sample_fmt, 1);max_nb_samples = dst_nb_samples;}// 音频重采样int ret = swr_convert(swr_ctx, dst_data, dst_nb_samples,(const uint8_t **)src_data, src_nb_samples);// 获取给定音频参数所需的缓冲区大小。int dst_buf_size = av_samples_get_buffer_size(&dst_linesize, dst_ch_layout.nb_channels,ret, dst_sample_fmt, 1);// writedst_file.write((char*)dst_data[0], dst_buf_size);}// clear and exit// TODO
}


附录 - SwrContext结构体字段

版本:ffmpeg-7.0

struct SwrContext {const AVClass *av_class;                        ///< AVClass used for AVOption and av_log()int log_level_offset;                           ///< logging level offsetvoid *log_ctx;                                  ///< parent logging contextenum AVSampleFormat  in_sample_fmt;             ///< input sample formatenum AVSampleFormat int_sample_fmt;             ///< internal sample format (AV_SAMPLE_FMT_FLTP or AV_SAMPLE_FMT_S16P)enum AVSampleFormat out_sample_fmt;             ///< output sample formatAVChannelLayout used_ch_layout;                 ///< number of used input channels (mapped channel count if channel_map, otherwise in.ch_count)AVChannelLayout  in_ch_layout;                  ///< input channel layoutAVChannelLayout out_ch_layout;                  ///< output channel layoutint      in_sample_rate;                        ///< input sample rateint     out_sample_rate;                        ///< output sample rateint flags;                                      ///< miscellaneous flags such as SWR_FLAG_RESAMPLEfloat slev;                                     ///< surround mixing levelfloat clev;                                     ///< center mixing levelfloat lfe_mix_level;                            ///< LFE mixing levelfloat rematrix_volume;                          ///< rematrixing volume coefficientfloat rematrix_maxval;                          ///< maximum value for rematrixing outputint matrix_encoding;                            /**< matrixed stereo encoding */const int *channel_map;                         ///< channel index (or -1 if muted channel) mapint engine;AVChannelLayout user_used_chlayout;             ///< User set used channel layoutAVChannelLayout user_in_chlayout;               ///< User set input channel layoutAVChannelLayout user_out_chlayout;              ///< User set output channel layoutenum AVSampleFormat user_int_sample_fmt;        ///< User set internal sample formatint user_dither_method;                         ///< User set dither methodstruct DitherContext dither;int filter_size;                                /**< length of each FIR filter in the resampling filterbank relative to the cutoff frequency */int phase_shift;                                /**< log2 of the number of entries in the resampling polyphase filterbank */int linear_interp;                              /**< if 1 then the resampling FIR filter will be linearly interpolated */int exact_rational;                             /**< if 1 then enable non power of 2 phase_count */double cutoff;                                  /**< resampling cutoff frequency (swr: 6dB point; soxr: 0dB point). 1.0 corresponds to half the output sample rate */int filter_type;                                /**< swr resampling filter type */double kaiser_beta;                                /**< swr beta value for Kaiser window (only applicable if filter_type == AV_FILTER_TYPE_KAISER) */double precision;                               /**< soxr resampling precision (in bits) */int cheby;                                      /**< soxr: if 1 then passband rolloff will be none (Chebyshev) & irrational ratio approximation precision will be higher */float min_compensation;                         ///< swr minimum below which no compensation will happenfloat min_hard_compensation;                    ///< swr minimum below which no silence inject / sample drop will happenfloat soft_compensation_duration;               ///< swr duration over which soft compensation is appliedfloat max_soft_compensation;                    ///< swr maximum soft compensation in seconds over soft_compensation_durationfloat async;                                    ///< swr simple 1 parameter async, similar to ffmpegs -asyncint64_t firstpts_in_samples;                    ///< swr first pts in samplesint resample_first;                             ///< 1 if resampling must come first, 0 if rematrixingint rematrix;                                   ///< flag to indicate if rematrixing is needed (basically if input and output layouts mismatch)int rematrix_custom;                            ///< flag to indicate that a custom matrix has been definedAudioData in;                                   ///< input audio dataAudioData postin;                               ///< post-input audio data: used for rematrix/resampleAudioData midbuf;                               ///< intermediate audio data (postin/preout)AudioData preout;                               ///< pre-output audio data: used for rematrix/resampleAudioData out;                                  ///< converted output audio dataAudioData in_buffer;                            ///< cached audio data (convert and resample purpose)AudioData silence;                              ///< temporary with silenceAudioData drop_temp;                            ///< temporary used to discard outputint in_buffer_index;                            ///< cached buffer positionint in_buffer_count;                            ///< cached buffer lengthint resample_in_constraint;                     ///< 1 if the input end was reach before the output end, 0 otherwiseint flushed;                                    ///< 1 if data is to be flushed and no further input is expectedint64_t outpts;                                 ///< output PTSint64_t firstpts;                               ///< first PTSint drop_output;                                ///< number of output samples to dropdouble delayed_samples_fixup;                   ///< soxr 0.1.1: needed to fixup delayed_samples after flush has been called.struct AudioConvert *in_convert;                ///< input conversion contextstruct AudioConvert *out_convert;               ///< output conversion contextstruct AudioConvert *full_convert;              ///< full conversion context (single conversion for input and output)struct ResampleContext *resample;               ///< resampling contextstruct Resampler const *resampler;              ///< resampler virtual function tabledouble matrix[SWR_CH_MAX][SWR_CH_MAX];          ///< floating point rematrixing coefficientsfloat matrix_flt[SWR_CH_MAX][SWR_CH_MAX];       ///< single precision floating point rematrixing coefficientsuint8_t *native_matrix;uint8_t *native_one;uint8_t *native_simd_one;uint8_t *native_simd_matrix;int32_t matrix32[SWR_CH_MAX][SWR_CH_MAX];       ///< 17.15 fixed point rematrixing coefficientsuint8_t matrix_ch[SWR_CH_MAX][SWR_CH_MAX+1];    ///< Lists of input channels per output channel that have non zero rematrixing coefficientsmix_1_1_func_type *mix_1_1_f;mix_1_1_func_type *mix_1_1_simd;mix_2_1_func_type *mix_2_1_f;mix_2_1_func_type *mix_2_1_simd;mix_any_func_type *mix_any_f;/* TODO: callbacks for ASM optimizations */
};

http://www.ppmy.cn/embedded/92675.html

相关文章

uniapp 实现自定义缩略滚动条

<template><view class"container-scroll"><!-- 文字导航 --><scroll-view class"scroll-view-text" scroll-x"true" v-if"type 1"><navigator:url"item.url"class"scroll-view-item"…

CesskeCRM基于若依平台二次开发的CRM系统

CesskeCRM基于若依平台二次开发的开源CRM系统&#xff0c;以SaaS方向实现多租户功能&#xff0c;动态创建数据库&#xff0c;独立数据库安全级别&#xff0c;不是按字段隔离。 多租户功能&#xff0c;物理数据库隔离。前端采用Vue、Element UI。后端采用Spring Boot、Spring S…

VSCode 使用总结

VSCode 使用总结 一&#xff1a;c/c 代码格式化二&#xff1a;忽略文件三&#xff1a;VSCode ssh remote linux file四&#xff1a;vscode 大纲预览找不到文件符号五&#xff1a;vscode 实用插件六&#xff1a;预定义变量列表七&#xff1a;VSCode快捷键 一&#xff1a;c/c 代码…

扩展Conda的宇宙:使用conda config --append channels命令

扩展Conda的宇宙&#xff1a;使用conda config --append channels命令 Conda不仅是Python编程语言的包管理器&#xff0c;它还是一个强大的环境管理工具&#xff0c;用于安装和管理不同编程语言的软件包。Conda的灵活性在很大程度上得益于其channels系统&#xff0c;它允许用户…

【Linux】常用指令集合

目录 1.who&#xff1a;查看使用云服务器的账号 2.pwd&#xff1a;显示当前所处的工作目录 3.ls&#xff1a;列出当前目录中的文件和子目录 ls 查看目录中的文件和子目录 ls -l 或者 ll 显示文件和目录的详细信息 ls -a 列出全部文件&#xff0c;包含隐藏文件 4.cd&#xf…

【SpringMVC】详细介绍SpringMVC的执行流程

目录 1. 概念 2.SpringMVC工作原理 3. springMVC的简单使用 1.在pom.xml中导入相关依赖 2.在web.xml中配置dispatcherServlet 3.创建springMVC.xml核心配置文件 1. 概念 什么是MVC&#xff1f; MVC是下面三个组件的简写&#xff0c;模型&#xff08;Model&#xff09;、视图…

免费【2024】springboot 房地产销售管理系统的设计与实现

博主介绍&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌ 技术范围&#xff1a;SpringBoot、Vue、SSM、HTML、Jsp、PHP、Nodejs、Python、爬虫、数据可视化…

68 类的定义与使用

Python 使用 class 关键字来定义类&#xff0c;class 关键字之后是一个空格&#xff0c;接下来是类的名字&#xff0c;如果派生自其他基类则需要把所有基类放到一对括号中并使用逗号分隔&#xff0c;然后是一个冒号&#xff0c;最后换行并定义类的内部实现。类名的首字母一般要…