每日OJ题_完全背包④_力扣279. 完全平方数(一维和二维)

embedded/2024/10/18 5:53:29/

目录

力扣279. 完全平方数

问题解析

解析代码

优化代码(相同子问题分析和滚动数组)


力扣279. 完全平方数

279. 完全平方数

难度 中等

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13输出:2
解释:13 = 4 + 9

提示:

  • 1 <= n <= 10^4
class Solution {
public:int numSquares(int n) {}
};

问题解析

(优化代码部分放了分析一维空间的思路,这个普通思路就简单描述了)

状态表示: dp[i][j] 表示:从前i个完全平方数中挑选,总和正好等于j,所有选法中最小的数量。

状态转移方程:

        线性 dp 状态转移方程分析方式,一般都是根据最后一步的状况,来分情况讨论。但是最后一个物品能选很多个,因此需要分很多情况:

  • 选 0 个i * i:dp[i][j] = dp[i - 1][j] 
  • 选 1 个i * i:dp[i][j] = dp[i - 1][j - i * i] + 1 ;
  • 选 2 个i * i:dp[i][j] = dp[i - 1][j - 2 * i * i] + 2 ;
  • ......

综上,状态转移方程为:

dp[i][j] = min(dp[i - 1][j] , dp[i - 1][j - i * i] + 1 + dp[i - 1][j - 2 * i * i] + 2 ,  ......)

        这时发现,计算一个状态的时候,需要一个循环才能搞定的时候,我们要想到去优化。优化的方向就是用一个或者两个状态来表示这一堆的状态,通常就是用数学的方式做一下等价替换。

        发现第二维是有规律的变化的,因此去看看 dp[i][j - i * i] + 1 ; 这个状态: dp[i][j - i * i] + 1 = min( dp[i - 1][j - 2 * i * i] + 2 , dp[i - 1][j - 3 * i * i] + 3  ,  ......)

        因此可以修改我们的状态转移方程为: dp[i][j] = min(dp[i - 1][j] , dp[i][j - i * i] + 1。(j >= i * i )。有个技巧,就是相当于把第二种情况 dp[i - 1][j - i * i] + 1 里面的 i - 1 变成 i 即可。

初始化: 初始化第一行即可,dp[0[0]为1,第一行后面初始化成无穷大。

填表顺序: 根据状态转移方程,仅需从上往下填表。

返回值: 根据状态表示,返回 dp[根号n][n] 。


解析代码

class Solution {
public:int change(int amount, vector<int>& coins) {int n = coins.size();vector<int> dp(amount + 1, 0); // 滚动数组优化dp[0] = 1;for(int i = 1; i <= n; ++i){for(int j = coins[i - 1]; j <= amount; ++j){dp[j] = dp[j] + dp[j - coins[i - 1]];}}return dp[amount];}
};

优化代码(相同子问题分析和滚动数组)

        先看能不能将问题转化成我们熟悉的题型。这里给出一个用拆分出相同子问题的方式,定义一个状态表示。(得到的结果 i 和 j 换一下就是滚动数组优化的结果)

为了叙述方便,把和为 n 的完全平方数的最少数量简称为最小数量

对于 12 这个数,分析一下如何求它的最小数量。

  • 如果 12 本身就是完全平方数,就不用算了,直接返回 1 ;
  • 但是 12 不是完全平方数,试着把问题分解⼀下:
  1. 情况一:拆出来一个 1 ,然后看看 11 的最小数量,记为 x1 ;
  2. 情况二:拆出来一个 4 ,然后看看 8 的最小数量,记为 x2 ;(为什么拆出来 4 , 而不拆出来 2 呢?)
  3. 情况三:拆出来一个 8 ...... 其中,接下来求 11、8 的时候,其实又回到了原来的问题上。

        因此,可以尝试用 dp 的策略,将 1 2 3 4 6 等等这些数的最小数量依次保存起来。再求较大的 n 的时候,直接查表,然后找出最小数量。

状态表示: dp[i] 表示:和为 i 的完全平方数的最少数量。

状态转移方程:

        对于 dp[i] ,根据思路里的分析知道,可以根据小于等于 i 的所有完全平方数 x 进行划分:

  • x = 1 时,最小数量为: 1 + dp[i - 1] ;
  • x = 4 时,最小数量为: 1 + dp[i - 4] ......

为了方便枚举完全平方数,采用的策略: for(int j = 1; j * j <= i; j++)

综上,状态转移方程为:

dp[i] = min(dp[i], dp[i - j * j] + 1)

初始化:当 n = 0 的时候,没法拆分,结果为 0 ; 当 n = 1 的时候,结果为 1 。

填表顺序: 根据状态转移方程,仅需从左往右填表。

返回值: 根据状态表示,返回 dp[n] 。

class Solution {
public:int numSquares(int n) {// dp[i] 表示:和为 i 的完全平方数的最少数量int m = sqrt(n);vector<int> dp(n + 1, 0x3f3f3f3f);dp[0] = 0;for(int i = 1; i <= m; ++i){for(int j = i * i; j <= n; ++j){dp[j] = min(dp[j], dp[j - i * i] + 1);}}return dp[n];}
};


http://www.ppmy.cn/embedded/6491.html

相关文章

【论文精读】Attention is all you need

摘要 主要的序列转换模型是基于复杂的循环或卷积神经网络&#xff0c;其中包括一个编码器和一个解码器。性能最好的模型还通过一种注意力机制将编码器和解码器连接起来。我们提出了一种新的简单的网络架构&#xff0c;Transformer&#xff0c;完全基于注意机制&#xff0c;完全…

Apache Spark 文件拆分机制

目录 数据拆分的基本概念 文件拆分的过程 保证数据完整性的机制 总结 数据拆分的基本概念 Apache Spark 在处理大规模数据集时&#xff0c;会将数据分成多个小块&#xff0c;这些小块称为分区&#xff08;partitions&#xff09;。数据被分区的目的是为了并行处理&#xff…

Python篇-垃圾回收机制详解

参考&#xff1a; Python垃圾回收机制详解-CSDN博客

jmeter分布式压测

前提 调度机和执行机都要安装配置JDK和jmeter的运行环境 调度机和执行机上JDK和Jmeter的版本要保持一致 防火墙要关闭 整体思路 mac电脑当调度机&#xff0c;多个ubuntu虚拟机当执行机 调度机&#xff1a;配置执行机的ip等信息&#xff0c;后面会详细介绍&#xff0c;存放jme…

Python 数据结构和算法实用指南(一)

原文&#xff1a;zh.annas-archive.org/md5/66ae3d5970b9b38c5ad770b42fec806d 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 前言 数据结构和算法是信息技术和计算机科学工程学习中最重要的核心学科之一。本书旨在提供数据结构和算法的深入知识&#xff0c;以及编程…

原始部落版本潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏

原始部落版本潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏 潮玩宇宙小程序定制大逃杀游戏APP开发H5游戏 潮玩宇宙大逃杀小游戏模块成品源码&#xff0c;可嵌入任何平台系统&#xff0c;增加用户粘性&#xff0c;消除泡沫&#xff0c;短视频直播引流。 玩家选择一间房间躲避杀手…

ADSP-21479的开发详解五(AD1939 C Block-Based Talkthru 48 or 96 kHz)音频直通

硬件准备 ADSP-21479EVB开发板&#xff1a; 产品链接&#xff1a;https://item.taobao.com/item.htm?id555500952801&spma1z10.5-c.w4002-5192690539.11.151441a3Z16RLU AD-HP530ICE仿真器&#xff1a; 产品链接&#xff1a;https://item.taobao.com/item.htm?id38007…

ollama 开源大语言模型平台

Ollama是一个开源的大语言模型平台,它允许用户在本地环境中运行、创建和共享大型语言模型。Ollama支持多种功能和特性,包括但不限于: 本地部署:Ollama提供了一个类似于Docker的CLI界面,使得用户可以快速地在本地进行大语言模型的推理部署1。这意味着用户可以在自己的计算机…