第100+11步 ChatGPT学习:R实现Logistic分类

embedded/2024/10/18 14:24:00/

基于R 4.2.2版本演示

一、写在前面

有不少大佬问做机器学习分类能不能用R语言,不想学Python咯。

答曰:可!用GPT或者Kimi转一下就得了呗。

加上最近也没啥内容写了,就帮各位搬运一下吧。

二、R代码实现Logistic分类

(1)导入数据

我习惯用RStudio自带的导入功能:

(2)建立LR模型

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]# Fit logistic regression model on the training set
model <- glm(X ~ ., data = trainData, family = "binomial")# Predict on the training and validation sets
trainPredict <- predict(model, trainData, type = "response")
validPredict <- predict(model, validData, type = "response")

主要解读下R里面LR回归的参数吧,也就是这个glm()函数:

在R语言中,glm()函数用于拟合广义线性模型(Generalized Linear Models),包括LR回归。以下是glm()函数的参数:

①formula: 一个公式对象,表示模型的因变量(响应变量)和自变量(解释变量)。对于LR回归,因变量应该是二元的(0和1),表示分类结果。自变量可以包括一个或多个连续或分类变量。

②data: 包含模型所需变量的数据框(data frame)或矩阵。

③family: 指定误差分布和链接函数的家族。对于LR回归,应设置为binomial。这指定了二项分布和逻辑斯蒂(logit)链接函数。

④weights: 可选参数,用于指定观测的权重。在逻辑回归中,这通常用于处理不平衡的数据集,对少数类进行加权以提高其在模型训练过程中的影响力。

⑤subset: 可选参数,用于指定用于拟合模型的数据子集。

⑥start: 可选参数,用于指定模型参数的初始估计值。

⑦etastart: 可选参数,用于指定线性预测器的初始估计值。

⑧mustart: 可选参数,用于指定是否必须提供初始值。

⑨offset: 可选参数,用于指定一个先验估计的已知量,通常用于泊松回归。

⑩control: 可选参数,用于指定控制模型拟合过程的参数。

可选参数主要关注weights吧,毕竟很多现实的数据都是不平衡数据。

(3)模型评价:ROC曲线

# Convert true values to factor for ROC analysis
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)# Calculate ROC curves and AUC values
trainRoc <- roc(response = trainData$X, predictor = trainPredict)
validRoc <- roc(response = validData$X, predictor = validPredict)# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "blue") +geom_area(alpha = 0.2, fill = "blue") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Training ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "red") +geom_area(alpha = 0.2, fill = "red") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Validation ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")

结果如下:

嗯,R作图很有自己的特色!

(4)模型评价:混淆矩阵和指标计算

# Function to plot confusion matrix using ggplot2
plot_confusion_matrix <- function(conf_mat, dataset_name) {conf_mat_df <- as.data.frame(as.table(conf_mat))colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +geom_tile(color = "white") +geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +scale_fill_gradient(low = "white", high = "steelblue") +labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +theme_minimal() +theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))
}# Calculate confusion matrices
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

结果如下:

各种指标:

三、全部代码整合

知道各位懒得自己整合:

# Load necessary libraries
library(caret)
library(pROC)
library(ggplot2)# Assume 'data' is your dataframe containing the data
# Set seed to ensure reproducibility
set.seed(123)# Split data into training and validation sets (80% training, 20% validation)
trainIndex <- createDataPartition(data$X, p = 0.8, list = FALSE)
trainData <- data[trainIndex, ]
validData <- data[-trainIndex, ]# Fit logistic regression model on the training set
model <- glm(X ~ ., data = trainData, family = "binomial")# Predict on the training and validation sets
trainPredict <- predict(model, trainData, type = "response")
validPredict <- predict(model, validData, type = "response")# Convert true values to factor for ROC analysis
trainData$X <- as.factor(trainData$X)
validData$X <- as.factor(validData$X)# Calculate ROC curves and AUC values
trainRoc <- roc(response = trainData$X, predictor = trainPredict)
validRoc <- roc(response = validData$X, predictor = validPredict)# Plot ROC curves with AUC values
ggplot(data = data.frame(fpr = trainRoc$specificities, tpr = trainRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "blue") +geom_area(alpha = 0.2, fill = "blue") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Training ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.1, label = paste("Training AUC =", round(auc(trainRoc), 2)), hjust = 0.5, color = "blue")ggplot(data = data.frame(fpr = validRoc$specificities, tpr = validRoc$sensitivities), aes(x = 1 - fpr, y = tpr)) +geom_line(color = "red") +geom_area(alpha = 0.2, fill = "red") +geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "black") +ggtitle("Validation ROC Curve") +xlab("False Positive Rate") +ylab("True Positive Rate") +annotate("text", x = 0.5, y = 0.2, label = paste("Validation AUC =", round(auc(validRoc), 2)), hjust = 0.5, color = "red")# Function to plot confusion matrix using ggplot2 and automatically display it
plot_confusion_matrix <- function(conf_mat, dataset_name) {conf_mat_df <- as.data.frame(as.table(conf_mat))colnames(conf_mat_df) <- c("Actual", "Predicted", "Freq")# Create the plotp <- ggplot(data = conf_mat_df, aes(x = Predicted, y = Actual, fill = Freq)) +geom_tile(color = "white") +geom_text(aes(label = Freq), vjust = 1.5, color = "black", size = 5) +scale_fill_gradient(low = "white", high = "steelblue") +labs(title = paste("Confusion Matrix -", dataset_name, "Set"), x = "Predicted Class", y = "Actual Class") +theme_minimal() +theme(axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5))# Display the plotprint(p)
}# Calculate confusion matrices
confMatTrain <- table(trainData$X, trainPredict >= 0.5)
confMatValid <- table(validData$X, validPredict >= 0.5)# Now call the function to plot and display the confusion matrices
plot_confusion_matrix(confMatTrain, "Training")
plot_confusion_matrix(confMatValid, "Validation")# Extract values for calculations
a_train <- confMatTrain[1, 1]
b_train <- confMatTrain[1, 2]
c_train <- confMatTrain[2, 1]
d_train <- confMatTrain[2, 2]a_valid <- confMatValid[1, 1]
b_valid <- confMatValid[1, 2]
c_valid <- confMatValid[2, 1]
d_valid <- confMatValid[2, 2]# Training Set Metrics
acc_train <- (a_train + d_train) / sum(confMatTrain)
error_rate_train <- 1 - acc_train
sen_train <- d_train / (d_train + c_train)
sep_train <- a_train / (a_train + b_train)
precision_train <- d_train / (b_train + d_train)
F1_train <- (2 * precision_train * sen_train) / (precision_train + sen_train)
MCC_train <- (d_train * a_train - b_train * c_train) / sqrt((d_train + b_train) * (d_train + c_train) * (a_train + b_train) * (a_train + c_train))
auc_train <- roc(response = trainData$X, predictor = trainPredict)$auc# Validation Set Metrics
acc_valid <- (a_valid + d_valid) / sum(confMatValid)
error_rate_valid <- 1 - acc_valid
sen_valid <- d_valid / (d_valid + c_valid)
sep_valid <- a_valid / (a_valid + b_valid)
precision_valid <- d_valid / (b_valid + d_valid)
F1_valid <- (2 * precision_valid * sen_valid) / (precision_valid + sen_valid)
MCC_valid <- (d_valid * a_valid - b_valid * c_valid) / sqrt((d_valid + b_valid) * (d_valid + c_valid) * (a_valid + b_valid) * (a_valid + c_valid))
auc_valid <- roc(response = validData$X, predictor = validPredict)$auc# Print Metrics
cat("Training Metrics\n")
cat("Accuracy:", acc_train, "\n")
cat("Error Rate:", error_rate_train, "\n")
cat("Sensitivity:", sen_train, "\n")
cat("Specificity:", sep_train, "\n")
cat("Precision:", precision_train, "\n")
cat("F1 Score:", F1_train, "\n")
cat("MCC:", MCC_train, "\n")
cat("AUC:", auc_train, "\n\n")cat("Validation Metrics\n")
cat("Accuracy:", acc_valid, "\n")
cat("Error Rate:", error_rate_valid, "\n")
cat("Sensitivity:", sen_valid, "\n")
cat("Specificity:", sep_valid, "\n")
cat("Precision:", precision_valid, "\n")
cat("F1 Score:", F1_valid, "\n")
cat("MCC:", MCC_valid, "\n")
cat("AUC:", auc_valid, "\n")

四、最后

亲测:代码调试还是的GPT-4,Kimi还是不太行。

数据嘛:

链接:https://pan.baidu.com/s/1rEf6JZyzA1ia5exoq5OF7g?pwd=x8xm

提取码:x8x


http://www.ppmy.cn/embedded/48571.html

相关文章

失眠焦虑?这些小妙招助你重拾宁静之夜

在这个快节奏的时代&#xff0c;失眠与焦虑似乎成了不少人的“常客”。每当夜幕降临&#xff0c;躺在床上却辗转反侧&#xff0c;思绪万千&#xff0c;仿佛整个世界的喧嚣都涌入了脑海。&#x1f4ad; 其实&#xff0c;放松心情&#xff0c;调整心态&#xff0c;是缓解失眠焦虑…

架构设计-web项目中跨域问题涉及到的后端和前端配置

WEB软件项目中经常会遇到跨域问题,解决方案早已是业内的共识,简要记录主流的处理方式: 跨域感知session需要解决两个问题: 1. 跨域问题 2. 跨域cookie传输问题 跨域问题 解决跨域问题有很多种方式,如使用springboot自带的crossOrigin注解 @CrossOrigin(origins = {&qu…

图片转Excel表格:提升数据处理效率的利器

在日常工作和生活中&#xff0c;我们经常遇到各种数据和信息以图片的形式存在。有时&#xff0c;这些数据图片中包含了重要的表格信息&#xff0c;例如财务报告、统计数据或调研结果。为了对这些数据进行进一步的分析和处理&#xff0c;我们需要将其转换为可编辑的电子表格格式…

深入理解指针(二)

目录 1. 数组名的理解 2. 使用指针访问数组 3. ⼀维数组传参的本质 4. 冒泡排序 5. 二级指针 6. 指针数组 7. 指针数组模拟二维数组 1. 数组名的理解 有下面一段代码: #include <stdio.h> int main() {int arr[10] { 1,2,3,4,5,6,7,8,9,10 };int* p &arr[…

代码签名证书如何选择

代码签名证书分为OV代码签名证书和EV代码签名证书。 OV代码签名证书在申请时只需要验证申请主体的真实性&#xff0c;部署安装后可以保护代码的完整性&#xff0c;防止代码被篡改&#xff0c;携带不良信息。 EV代码签名证书是OV代码签名证书的升级版&#xff0c;对代码的保护…

深度学习Day-20:DenseNet算法实战 乳腺癌识别

&#x1f368; 本文为&#xff1a;[&#x1f517;365天深度学习训练营] 中的学习记录博客 &#x1f356; 原作者&#xff1a;[K同学啊 | 接辅导、项目定制] 一、 基础配置 语言环境&#xff1a;Python3.8编译器选择&#xff1a;Pycharm深度学习环境&#xff1a; torch1.12.1c…

vscode侧边栏错乱重制

vscode 重制命令面板 View: Reset View Locations

【QT5】<知识点> QT串口编程

目录 前言 一、串口编程步骤 0. 添加串口模块 1. 自动搜索已连接的串口 2. 创建串口对象 3. 初始化串口 4. 打开串口 5. 关闭串口 6. 发送数据 7. 接收数据 二、简易串口助手 1. 实现效果 2. 程序源码 3. 实现效果二 前言 本篇记录QT串口编程相关内容&#xff0…