redis 集群 底层原理以及实操

embedded/2024/9/25 0:36:02/

前言

上篇我们讲解了哨兵集群是怎么回事

也说了对应的leader选举raft算法

也说了对应的slave节点是怎么被leader提拔的

主要是比较优先级 比较同步偏移量 比较runid等等

今天我们再说说,其实哨兵也有很多缺点

虽然在master挂了之后能很快帮我们选举出新的master

但是对于单个master承受的压力过大的情况还是没有得到很好的解决

因此,我们就推出了新的技术  集群cluster

于是我们也就放弃了原有的哨兵操作

下面我们慢慢介绍

结构

首先我们也是先看看原来的哨兵架构

再来看看今天要介绍的集群架构

这里对应master之间是数据共享的

至于为什么我们下面慢慢介绍

由于集群自带故障迁移,这里也是自然取代了哨兵

首先我们先介绍几个基本的概念

分片

这里分片的意思就是对应的每个节点负责一部分的槽位数据

一个集群负责所有的数据

一个节点就负责一片片区的数据

槽位

上面我们提到的一片片区的基本单位就是槽位

是由16384个槽位组成的

注:这里建议节点数不要超过1k

上述的架构可以这样理解

哈希算法

我们如何找到对应的槽位呢?

通过一次CRC16算法再&0x3FFF即可

哈希映射有哪些 方式呢???

1.哈希取余分区算法

简单有效

将对应的哈希值取模一个机器数量即可

缺点就是扩容比较困难

我们需要将所有数据key进行一次rehash的操作

2.一致性哈希分区算法

首先由一个重要的概念称之为哈希环

也就是将所有数据首位相连成一个一致性哈希环

假设是0-65535

这里0和65536指向的就是同一块位置

逻辑图如下

这样我们也就得到了一个所有哈希值的全量集

接着将对应的服务器ip进行对应的映射

最后就是对应的key进行hash了

就是顺时针找到的第一个节点就负责存储这一个键值对

优点是容错性好,缺失一个节点也能直接使用下一个遇见的redis节点进行存储

扩展性好,假设需要加上一个节点x,就只需要移动一小块区域的数据

如上图 我们只需要移动对应的a到x的数据即可

但是缺点也是存在的

很可能出现数据倾斜的问题

也就是说头重脚轻,分配不均匀的情况

于是我们就使用了哈希槽的方式解决问题

3.哈希槽分区算法

就是我们之前说的将16384个哈希槽分给不同的节点来保存

这里主要就是一个使用CRC16(key) 再进行了一次取模16384的操作

主要架构如下

为啥是16384???

为啥是16384个槽位呢

主要是因为以下原因

1.首先客户端每隔一段时间会给服务器发送心跳包,心跳包中就有槽位的数据

如果需要65536个槽位这里的数据量就达到了8K,但是如果是16384个槽位这里的数据就只有2k,这样的性能更好不容易导致网络阻塞

2.官网声明不可以使用超过1000个节点

因为节点过多就会导致传输数据的失真等等,也是不可取的

这里16384个槽位也是足够使用的

3.对于文件的压缩

发送的数据包如果太大就不方便压缩了

这里16384个槽位slot是刚刚好的

数据丢失

注:redis集群并没有保证数据的强一致性

假设我给1号机器写入数据还没来得及同步给从机就挂掉了

从机即使上位也无法得到之前的数据

集群搭建

首先我们在myredis下面创建新的cluster文件夹存放对应的配置文件

mkdir -p /myredis/cluster   这里-p就是父目录不存在也会创建  

我们三台虚拟机每台放两个配置文件

分别对应一主一从

对应的配置文件如下

这里我们使用的是从6381开始的6个redis节点

bind 0.0.0.0
daemonize yes
protected-mode no
port 6382
logfile "/myredis/cluster/cluster6382.log"
pidfile /myredis/cluster6382.pid
dir /myredis/cluster
dbfilename dump6382.rdb
appendonly yes
appendfilename "appendonly6382.aof"
requirepass 111111
masterauth 111111
cluster-enabled yes
cluster-config-file nodes-6382.conf
cluster-node-timeout 5000

在六个redis节点都启动之后我们开始创建集群

使用如下命令,注意结合自身ip 使用ifconfig可以查看

redis-cli -a abc123 --cluster create 
--cluster-replicas 1 192.168.188.136:6381 192.168.188.136:6382 
192.168.188.137:6383 192.168.188.137:6384 
192.168.188.138:6385 192.168.188.138:6386
这里replicas 1 就是每个主机配置一个从机 后面对应主从关系 使用任意一台vm进行操作即可

接下来直接yes即可

出现对应的配置文件即算配置成功

我们可以使用

cluster nodes 查看集群状态

注意这里不同的机器对应的槽位不同

所以set k1 v1 很可能会失败

而k2v2会成功

这是因为登入的是1号节点 而对应计算的槽位是由5号节点管理的

我们只需要在登录的时候在最后加上一个-c 以集群形式登录

此时遇到哪个集群就会自动跳转到对应的ip端口进行操作了

redis-cli -a abc123 -p 6381 -c

这里可以理解为路由/重定向

容灾

先说结论,主机挂了从机会上位

此时主机再回来也只能当从机了

下面是具体演示

手动shutdown6381

使用cluster nodes查看情况

我们发现对应的6384上位了

此时重启6381只能当小弟了

我们还可以进行对应的恢复

让6381继续当老大,6384继续当小弟

此时只需要登录6381进行对应的操作即可

cluster failover

此时6381就可以重回master

扩容

下面演示扩容节点

我们先在192.168.138第三台vm下创建两个配置文件

并启动对应的redis

加入集群只需要执行以下命令

找6381当做引路人即可

此时我们会发现虽然添加节点成功但是没有分配槽位

检查一下集群状态

redis-cli -a abc123 --cluster check 192.168.188.136:6381

我们需要进行reshard进行分配槽位

redis-cli -a abc123 --cluster reshard 192.168.188.138:6387

因为现在是4个节点所以分配一个节点4096个槽位

我们需要之前check的6387的id号

然后输入all

进行对应的reshard

在进行一次check查看对应的状态

最后为6387分配从节点

redis-cli -a abc123 --cluster add-node 192.168.188.138:6388 192.168.188.138:6387 --cluster-slave --cluster-master-id e03b3d6631033baa0961653ebec70800f6bf0fec

最后检查一下结构

最后四主四从也就搭建完成了

缩容

虽然基本上用不到,但是咱们主打一个完整性

首先清楚6388

使用上面的check指令获取对应的id

redis-cli -a abc123 --cluster del-node 192.168.188.138:6388  20dd91501451051961745a005f580858db6f7a2e

删除之后对应的子节点可以再查看一下

然后得执行reshard将对应的slot槽位分配回去

为了方便起见我们直接全分配给6381号机器即可


redis-cli -a abc123 --cluster reshard 192.168.188.136:6381

直接全部分配写4096

然后选择6381号机器的id

对应的done即可

此时我们再进行一次check

我们发现6387已经变成salve了

对应的槽位也清零了

最后进行删除节点操作

redis-cli -a abc123 --cluster del-node 192.168.188.138:6387 e03b3d6631033baa0961653ebec70800f6bf0fec

批处理操作

我们知道不同的key k1 k2 k3会被分配到不同的slot上

所以进行批处理查询操作是会报错的

如果我们想进行批处理

可以使用通配符将几个key映射为一组

类似于以下操作

我们在cluster.c的源文件中也可以找到对应的

我们发现redis会使用通配符{}中间的元素进行CRC算法

其他操作

redis还有一个重要参数

就是当假设分区1的主从节点都宕机了之后

我们对外还会不会进行服务暴露???

默认是yes 也就是不服务暴露的  但是我们也是可以设置服务暴露的

但是这时候就会有一些数据是不可访问的

重要的三个集群命令

cluster nodes  
查看节点情况cluster countinkeysinslot slotId  
查看slot是否被占用cluster keyslot k1
查看key使用的slot是啥
也就是进行了一次CRC16算法并取余16384

示例如下

说明1236槽位没有存放数据

说明k123会存放在4255槽位上


http://www.ppmy.cn/embedded/44177.html

相关文章

BigDecimal基本加减乘除

一、BigDecimal类 在Java中,BigDecimal类提供了对超过16位有效位的数进行精确运算的能力。它不能直接使用传统的、-、*、/等算术运算符,而是必须调用其相应的方法来进行运算。这些方法包括 加法:使用add()方法。 减法:使用subtr…

芋道源码 / yudao-cloud:前端技术架构探索与实践

摘要: 随着企业信息化建设的深入,后台管理系统在企业运营中扮演着至关重要的角色。本文将以芋道源码的yudao-cloud项目为例,深入探讨其前端技术架构的设计思路、关键技术与实现细节,并分享在开发过程中遇到的挑战与解决方案。 一、…

c++中的继承

一、引言 在面向对象编程(OOP)的世界中,继承是一个核心概念,它允许我们定义一个类(称为基类或父类)作为另一个类(称为派生类或子类)的基础。通过继承,子类可以继承基类的…

【JS基础知识06】数组

一:数组是什么以及如何创建 1 是什么 数组是一种引用数据类型(复杂数据类型),在数组中可以添加任何数据类型的元素 2 怎么创建 利用数组字面量的方式 let arr [数组元素] 利用new构造函数方式 let arr new Array(数组元素)…

前端面试题日常练-day40 【面试题】

题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末 1. Bootstrap 的栅格系统是基于( )进行布局的。A. 像素 B. 百分比 C. 媒体查询 2. 在 Bootstrap 中,要创建一个按钮,可以使用( &#xff…

深度学习之学习率调度器Scheduler介绍

调度器是深度学习训练过程中非常重要的一部分,它用于动态调整模型的学习率,从而提高训练效率和最终性能。 1. 为什么需要学习率调度器? 深度学习训练中,学习率是一个非常关键的超参数。合适的学习率可以确保模型快速收敛并获得良好的性能。 但是在训练过程中,最优的学习率会随…

MindSpore实践图神经网络之环境篇

MindSpore在Windows11系统下的环境配置。 MindSpore环境配置大概分为三步:(1)安装Python环境,(2)安装MindSpore,(3)验证是否成功 如果是GPU环境还需安装CUDA等环境&…

ABAP 在增强中COMMIT

前言 呃,又是很磨人的需求,正常情况下是不允许在增强中COMMIT的,会影响源程序本身的逻辑,但是这个需求就得这么干… 就是在交货单增强里面要再调用一次交货单BAPI,通过SO的交货单自动创建STO的交货单,如果…