Java 【数据结构】 TreeSetTreeMap(二叉搜索树详解)【神装】

embedded/2024/10/21 9:17:37/

登神长阶

 第八神装 TreeSet

   第九神装  TreeMap


目录

💉 一.二叉搜索树

🩸1. 定义

💊2. 基本操作

🩹3. 插入操作

🩼4. 查找操作

🩺5. 删除操作*

🩻6. 遍历操作

🪒7.性能分析

TreeSet-toc" style="margin-left:0px;">🪥二.TreeSet

🧽1. 定义

🧻 2.操作

🪣3. Set主要特性

TreeSet%E7%9A%84%E5%86%85%E9%83%A8%E5%AE%9E%E7%8E%B0-toc" style="margin-left:40px;">🫧4. TreeSet的内部实现

🛒5. 应用场景

TreeMap-toc" style="margin-left:0px;">🧯三.TreeMap

🧹1.定义

🪤2.操作

🧷3.Map的主要特性

TreeMap%E7%9A%84%E5%86%85%E9%83%A8%E5%AE%9E%E7%8E%B0-toc" style="margin-left:40px;">🧿4. TreeMap的内部实现

🪬5.应用场景 

🗿四.总结与反思


💉 一.二叉搜索树

首先我们要知道TreeSet/TreeMap底层都采用的都是一种二叉搜索树(也叫自平衡二叉树),因此我们先来了解一下二叉搜索树

对于他的学习若之前没有了解的可以参考:Java数据结构】 二叉树(Binary_Tree)【神装】

🩸1. 定义

二叉搜索树(Binary Search Tree,简称BST),是一种特殊的二叉树,它具有以下性质:

  • 每个节点都有一个键(Key)和两个指向其他节点的指针(左子指针和右子指针)。
  • 任意节点的左子树中的所有键都小于该节点的键。
  • 任意节点的右子树中的所有键都大于该节点的键。
  • 左右子树也都是二叉搜索树
  • 不存在键值相等的节点。

Java中,我们可以这样定义一个二叉搜索树

public class BinarySearchTree {private class Node {int val;Node left;Node right;Node(int val) {this.val = val;left = null;right = null;}}private Node root;// 构造函数、插入方法、查找方法、删除方法等...
}

💊2. 基本操作

二叉搜索树支持以下基本操作:

  • 插入(Insert):向树中插入一个新节点,保持树的二叉搜索性质。
  • 查找(Search):在树中查找一个特定的节点。
  • 删除(Delete):从树中删除一个节点,并保持树的二叉搜索性质。
  • 遍历(Traverse):对树进行遍历,常用的遍历方式有前序、中序和后序遍历。

接下来我们详细介绍一下它的各个操作,因为后续二叉树本身是数据结构中一个很关键的知识点,像红黑树,AVL树等等,我们需要牢牢掌握!

🩹3. 插入操作

插入操作的步骤如下:

  1. 创建新节点。
  2. 比较新节点的键与根节点的键:
    • 如果新节点的键小于根节点的键,则将新节点插入到根节点的左子树中。
    • 如果新节点的键大于根节点的键,则将新节点插入到根节点的右子树中。
  3. 如果插入点是空,则直接在新位置插入新节点。
  4. 如果插入点非空,则递归地在相应子树中进行插入操作。

代码: 

 /*** 插入一个元素* @param key*/public void insert(int key) {TreeNode node=new TreeNode(key);//若该搜索树为空,则直接作为根节点;if (root==null){root=node;}TreeNode cur=root;TreeNode parent=null;while(cur!=null){if (cur.key<key){parent = cur;cur=cur.right;}else if(cur.key>key){parent = cur;cur=cur.left;}else{return ;}}if (parent.key>key){parent.left=node;}else{parent.right=node;}}

🩼4. 查找操作

查找操作的步骤如下:

  1. 从根节点开始比较。
  2. 如果查找的键小于当前节点的键,则递归地在左子树中查找。
  3. 如果查找的键大于当前节点的键,则递归地在右子树中查找。
  4. 如果找到节点,则返回该节点。
  5. 如果没有找到,则返回null。

代码

 //查找key是否存在public TreeNode search(int key) {TreeNode cur =root;while(cur!=null){if (cur.key<key){cur=cur.right;}else if(cur.key>key){cur=cur.left;}else{return cur;}}return null;}

🩺5. 删除操作*

设待删除结点为 cur, 待删除结点的双亲结点为 parent
1. cur.left == null
  1. cur root,则 root = cur.right
  2. cur 不是 rootcur parent.left,则 parent.left = cur.right
  3. cur 不是 rootcur parent.right,则 parent.right = cur.right
2. cur.right == null
  1. cur root,则 root = cur.left
  2. cur 不是 rootcur parent.left,则 parent.left = cur.left
  3. cur 不是 rootcur parent.right,则 parent.right = cur.left
3. cur.left != null && cur.right != null
  • 需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题

代码

//删除key的值public boolean remove(int key) {TreeNode cur =root;TreeNode parent=null;while(cur!=null){if (cur.key>key){parent=cur;cur=cur.left;}else if (cur.key<key){parent=cur;cur=cur.right;}else{removeNode(parent,cur);return true;}}return false;}public void removeNode(TreeNode parent,TreeNode cur){if (cur.left==null){//左子树为空if (cur==root){root=cur.right;}else if(cur==parent.left){parent.left=cur.right;}else{parent.right=cur.right;}}else if (cur.right==null){//右子树为空if (cur==root){root=cur.left;}else if (cur==parent.left){parent.left=cur.left;}else{parent.right=cur.left;}}else{//左右子树都不为空 右子树的最小值代替TreeNode targetp=cur;TreeNode target=cur.right;while(target!=null){targetp=target;target=target.left;}cur.key=target.key;//删除原本数值if (targetp.left==target){targetp.left=target.left;}else{targetp.right=target.right;}}}

🩻6. 遍历操作

二叉搜索树的遍历操作与普通二叉树相同,可以使用前序、中序和后序遍历。

中序遍历会按照从小到大的顺序访问所有节点,是一个有序数列

前序遍历代码举例

  public void prevOreder(TreeNode root){if (root==null){return;}prevOreder(root.left);System.out.print(root.key+" ");prevOreder(root.right);}

其余遍历方式,包括非递归的遍历方式:  Java数据结构】 二叉树(Binary_Tree)【神装】

🪒7.性能分析

        插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
        但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树

最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:log N
最差情况下,二叉搜索树退化为单支树,其平均比较次数为:N/2

TreeSet" style="background-color:transparent;">🪥二.TreeSet

🧽1. 定义

TreeSetJava集合框架中的一种有序集合,它实现了Set接口,因此具有不允许重复元素的特性。与HashSet不同,TreeSet使用红黑树数据结构来存储元素,这使得元素在集合中保持有序。

🧻 2.操作

方法
解释
boolean add (E e)
添加元素,但重复元素不会被添加成功
void clear ()
清空集合
boolean contains (Object o)
判断 o 是否在集合中
Iterator<E> iterator ()
返回迭代器
boolean remove (Object o)
删除集合中的 o
int size()
返回 set 中元素的个数
boolean isEmpty()
检测 set 是否为空,空返回 true ,否则返回 false
Object[] toArray()
set 中的元素转换为数组返回
boolean containsAll(Collection<?> c)
集合 c 中的元素是否在 set 中全部存在,是返回 true ,否则返回 false
boolean addAll(Collection<? extends E> c)
将集合 c 中的元素添加到 set 中,可以达到去重的效果
import java.util.TreeSet;public class TreeSetExample {public static void main(String[] args) {// 创建一个TreeSet,元素自然排序(升序)TreeSet<Integer> numbers = new TreeSet<>();// 添加一些元素numbers.add(5);numbers.add(3);numbers.add(8);numbers.add(1);// 打印整个TreeSetSystem.out.println("TreeSet: " + numbers);// 查找是否存在某个元素System.out.println("Contains 6: " + numbers.contains(6));// 删除一个元素numbers.remove(3);System.out.println("TreeSet after removing 3: " + numbers);// 遍历TreeSetSystem.out.println("Traversing TreeSet:");for (int number : numbers) {System.out.println(number);}// 排序和检索操作System.out.println("First element: " + numbers.first());System.out.println("Last element: " + numbers.last());System.out.println("Element greater than 4: " + numbers.higher(4));System.out.println("Element lower than 4: " + numbers.lower(4));}
}

🪣3. Set主要特性

  • Set是继承自Collection的一个接口类
  • TreeSet 中不能插入 null key HashSet 可以。
  • 实现 Set 接口的常用类有 TreeSet HashSet ,还有一个 LinkedHashSet LinkedHashSet 是在 HashSet 的基础上维护了一个双向链表来记录元素的插入次序。
  • 有序性:元素按照自然顺序或者根据提供的Comparator进行排序。当向TreeSet中添加元素时,会根据元素之间的比较关系进行自动排序。
  • 不可重复性TreeSet中的元素不允许重复。Set最大的功能就是对集合中的元素进行去重
  • 基于红黑树实现:通过红黑树数据结构实现了有序的、唯一元素存储。
Set 底层结构
底层结构
红黑树
插入 / 删除 / 查找时间
复杂度
O(log N)
是否有序
关于 Key 有序
线程安全
不安全
插入 / 删除 / 查找区别
按照红黑树的特性来进行插入和删除
比较与覆写
key 必须能够比较,否则会抛出
ClassCastException 异常
应用场景
需要 Key 有序场景下

TreeSet%E7%9A%84%E5%86%85%E9%83%A8%E5%AE%9E%E7%8E%B0" style="background-color:transparent;">🫧4. TreeSet的内部实现

TreeSet通过红黑树(Red-Black Tree)数据结构实现了有序的、唯一元素存储。红黑树是一种自平衡的二叉查找树,在插入和删除操作后能够保持相对较低的高度,从而保证了检索、插入和删除操作的时间复杂度为O(log n)。

🛒5. 应用场景

TreeSet适用于需要保持元素有序并且去除重复元素的场景。由于其基于红黑树实现,可以高效地支持元素的查找、插入和删除操作。因此,在需要有序集合且不允许重复元素的情况下,TreeSet是一个十分实用的选择。总而言之:

  • 当需要保持元素的有序性且不允许重复时,TreeSet是一个很好的选择。
  • 常用于需要按照特定顺序处理元素的情况。

TreeMap">🧯三.TreeMap

🧹1.定义

TreeMap是基于红黑树数据结构的键值对映射。它保证键的有序性,键按照其自然顺序(通过键的compareTo方法确定的顺序)进行排序。

🪤2.操作

方法
解释
V get (Object key)
返回 key 对应的 value
V getOrDefault (Object key, V defaultValue)
返回 key 对应的 value key 不存在,返回默认值
V put (K key, V value)
设置 key 对应的 value
V remove (Object key)
删除 key 对应的映射关系
Set<K> keySet ()
返回所有 key 的不重复集合
Collection<V> values ()
返回所有 value 的可重复集合
Set<Map.Entry<K, V>> entrySet ()
返回所有的 key-value 映射关系
boolean containsKey (Object key)
判断是否包含 key
boolean containsValue (Object value)
判断是否包含 value
import java.util.Map;
import java.util.TreeMap;public class TreeMapExample {public static void main(String[] args) {// 创建一个 TreeMapTreeMap<Integer, String> treeMap = new TreeMap<>();// 向 TreeMap 中添加键值对treeMap.put(1, "value1");treeMap.put(2, "value2");treeMap.put(3, "value3");treeMap.put(4, "value4");treeMap.put(5, "value5");// 打印 TreeMapSystem.out.println("TreeMap: " + treeMap);// 获取一个键对应的值String value = treeMap.get(3);System.out.println("Value for key 3: " + value);// 删除一个键值对boolean removed = treeMap.remove(2);System.out.println("Remove key 2: " + removed);// 获取 TreeMap 的大小int size = treeMap.size();System.out.println("Size of TreeMap: " + size);// 检查 TreeMap 是否为空boolean isEmpty = treeMap.isEmpty();System.out.println("Is TreeMap empty: " + isEmpty);// 遍历 TreeMapfor (Map.Entry<Integer, String> entry : treeMap.entrySet()) {System.out.println("Key: " + entry.getKey() + ", Value: " + entry.getValue());}}
}

🧷3.Map的主要特性

  1. Map是一个接口,不能直接实例化对象,如果要实例化对象只能实例化其实现类TreeMap或者HashMap
  2. Map中存放键值对的Key是唯一的,value是可以重复的
  3. TreeMap中插入键值对时,key不能为空,否则就会抛NullPointerException异常value可以为空。但是HashMapkeyvalue都可以为空。
  4. Map中的Key可以全部分离出来,存储到Set来进行访问(因为Key不能重复)
  5. Map中的value可以全部分离出来,存储在Collection的任何一个子集合中(value可能有重复)
  6. Map中键值对的Key不能直接修改,value可以修改,如果要修改key,只能先将该key删除掉,然后再来进行重新插入。

Map底层结构
底层结构
红黑树
插入 / 删除 / 查找时间
复杂度
O(log N)
是否有序
关于 Key 有序
线程安全
不安全
插入 / 删除 / 查找区别
需要进行元素比较
比较与覆写
key 必须能够比较,否则会抛出
ClassCastException 异常
应用场景
需要 Key 有序场景下

TreeMap%E7%9A%84%E5%86%85%E9%83%A8%E5%AE%9E%E7%8E%B0" style="background-color:transparent;">🧿4. TreeMap的内部实现

TreeMap的内部实现是通过红黑树来存储键值对的。红黑树是一种自平衡的二叉查找树,它保证了在插入和删除操作后,树的高度保持相对较低,从而保证了高效的查找、插入和删除操作。 

🪬5.应用场景 

在实际应用中,如果你需要一个有序的映射表,并且不允许键重复,那么TreeMap是一个很好的选择。它既满足了有序性的需求,又提供了高效的操作性能。总而言之:

  • 当需要保持键的有序性且需要根据键快速查找值时,TreeMap是一个很好的选择。
  • 常用于需要按照特定顺序处理键值对的情况。

🗿四.总结与反思

人们在一起可以做出单独一个人所不能做出的事业;智慧+双手+力量结合在一起,几乎是万能的。——韦伯斯特

        在学习二叉搜索树TreeSet/TreeMap的过程中,我深刻体会到了数据结构在编程中的应用和重要性。二叉搜索树作为一种特殊的二叉树,其特性包括每个节点的左子树都比当前节点小,右子树都比当前节点大,这使得在二叉搜索树中进行查找、插入和删除操作的时间复杂度可以达到O(log n),相比于线性搜索的O(n)有了显著的提升。而TreeSetTreeMap的底层实现正是基于这种高效的数据结构——红黑树。

        红黑树是一种自平衡的二叉查找树,它通过红黑规则来保持树的平衡,确保任何节点的左子树的高度最多比右子树高1,从而保证了树的平衡性。在TreeSetTreeMap中,插入、删除和查找操作的时间复杂度均为O(log n),这使得它们在处理大量数据时依然能够保持高效。

        学习二叉搜索树TreeSet/TreeMap的过程中,我认识到数据结构的选择对于程序的性能有着至关重要的影响。虽然HashMap在查找、插入和删除操作上提供了O(1)的时间复杂度,但是它不保证元素的顺序,而TreeSetTreeMap在保持有序的同时,牺牲了一部分时间复杂度。在实际应用中,我们需要根据具体需求选择合适的数据结构,以达到最优的性能。

        此外,在学习过程中,我也意识到了在多线程环境中使用TreeMap时需要注意同步问题。TreeMap不是线程安全的,如果需要在多线程环境中使用,需要程序员手动同步,或者通过包装等方式将TreeMap变成同步的。

        总的来说,学习二叉搜索树TreeSet/TreeMap让我对数据结构算法有了更深入的理解,也让我认识到在实际编程中选择合适的数据结构的重要性。在未来的学习和工作中,我会继续探索和运用这些知识,以提高程序的性能和可靠性。


🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀

以上,就是本期的全部内容啦,若有错误疏忽希望各位大佬及时指出💐

  制作不易,希望能对各位提供微小的帮助,可否留下你免费的赞呢🌸


http://www.ppmy.cn/embedded/37590.html

相关文章

OFD(Open Fixed-layout Document)

OFD(Open Fixed-layout Document) &#xff0c;是由工业和信息化部软件司牵头中国电子技术标准化研究院成立的版式编写组制定的版式文档国家标准&#xff0c;属于中国的一种自主格式&#xff0c;要打破政府部门和党委机关电子公文格式不统一&#xff0c;以方便地进行电子文档的…

python 如何在列表、字典、集合中根据条件筛选数据--实战经验

一、列表 需求&#xff1a;过滤掉列表中的负数数据 from random import randint #生成数据 data [randint(-10,10) for _ in range(10)][-6, -10, -6, -9, -7, -7, 2, -9, 9, 2] 第一种&#xff0c;传统的方法 res[] for x in data:if x>0:res.append(x) 第二种&#…

Android 蓝牙实战——蓝牙音乐播放/暂停调用(二十一)

通过前面的学习我们了解了蓝牙开发中的各个协议&#xff0c;同时也知道蓝牙音乐的开发需要使用的是蓝牙的 a2dp 和 avrcp&#xff0c;而对蓝牙音乐的控制使用的是 avrcp&#xff0c;这里我们就梳理一下蓝牙音乐播放的调用流程。 一、调用流程 在前面的 Avrcp 协议中&#xff0…

1984. 学生分数的最小差值C++

给你一个 下标从 0 开始 的整数数组 nums &#xff0c;其中 nums[i] 表示第 i 名学生的分数。另给你一个整数 k 。 从数组中选出任意 k 名学生的分数&#xff0c;使这 k 个分数间 最高分 和 最低分 的 差值 达到 最小化 。 返回可能的 最小差值 。 示例 1&#xff1a; 输入&…

无人机+垂直起降:微型共轴双旋翼无人机技术详解

微型共轴双旋翼无人机技术是一种独特的无人机设计&#xff0c;它结合了垂直起降&#xff08;VTOL&#xff09;能力和微型无人机的灵活性。这种设计允许无人机在无需跑道的情况下垂直起降&#xff0c;并具备在空中悬停和执行各种飞行动作的能力。 适用于集群控制&#xff0c;荷载…

大型语言模型的新挑战:AMR语义表示的神秘力量

DeepVisionary 每日深度学习前沿科技推送&顶会论文&数学建模与科技信息前沿资讯分享&#xff0c;与你一起了解前沿科技知识&#xff01; 引言&#xff1a;AMR在大型语言模型中的作用 在自然语言处理&#xff08;NLP&#xff09;的领域中&#xff0c;抽象意义表示&…

bfs之八数码

文章目录 八数码解题思路图解举例算法思路 代码CPP代码Java代码 八数码 在一个 33的网格中&#xff0c;1∼8这 8个数字和一个 x 恰好不重不漏地分布在这 33 的网格中。 例如&#xff1a; 1 2 3 x 4 6 7 5 8在游戏过程中&#xff0c;可以把 x 与其上、下、左、右四个方向之一…

我独自升级崛起下载方法分享 下载教程

《我独自升级&#xff1a;崛起》这款精彩绝伦的动作角色扮演游戏&#xff0c;灵感来源于大热网络漫画&#xff0c;让玩家亲自踏上主角程肖宇的征途&#xff0c;从觉醒初阶到实力飞跃&#xff0c;每一步成长都扣人心弦。值得注意的是&#xff0c;尽管全球正式发布日期定在了五月…