C语言【动态内存】

embedded/2024/9/24 7:26:28/

1.为什么要有动态内存

我们现在掌握的内存开辟方法有:

int val = 20;//在栈空间开辟4个字节
char str[10]={0};//在栈空间开辟10个字节的连续的空间

但是上述的方式有两个点要注意:

1.空间开辟的大小是固定的
2.数组在申明的时候,一定要指定数组的长度(就算是变长数组也是先给变量赋值,再根据变量的大小,来开辟空间),数组空间一旦确定了大小是不能调整的

但是我们在实际上对于内存的需求方式,绝不仅仅是上述的情况。有时候我们需要的空间大小是在程序运行的时候才能知道,数组是在编译时开辟空间的,这是就不能满足需求了。
这时C语言就引入了动态内存开辟,让程序员可以自己根据需求来申请和释放空间这样就比较灵活。

2.动态内存函数

要想学会动态开辟内存就必须掌握这四个函数malloc free calloc realloc

它们的头文件都为<stdlib.h>
他们开辟空间的大小单位都为字节。

2.1 malloc

函数原型:void* malloc(size_t size);
该函数向内存申请一块连续何用的空间,并返回指向这块空间的指针。

  1. 如果开辟成功,返回一个指向开辟好空间的指针。
  2. 如果开辟失败,则会返回一个NULL指针,因此malloc的返回值一定要做检查。

因为返回类型是void*,所以malloc函数并不知道开辟空间时是什么类型,在实际使用时类型是有使用者决定的。

如果参数size为 0,malloc的行为是标准未定义的,结果取决于编译器。

代码如下:

#include<stdio.h>
#include<stdilb.h>
int main()
{int* parr = (int*)malloc(10 * sizeof(int));if (parr == NULL){perror("malloc");exit(1);}for (int i = 0; i < 10; i++){//初始化*(parr + i) = i + 1;//打印printf("%d ", *parr + i);}return 0;
}

在这里插入图片描述

注意:malloc开辟的空间并未进行初始化,里面是随机值

#include<stdio.h>
#include<stdilb.h>
int main()
{int* parr = (int*)malloc(10 * sizeof(int));if (parr == NULL){perror("malloc");exit(1);}for (int i = 0; i < 10; i++){//初始化*(parr + i) = i + 1;//打印printf("%d ", *parr + i);}return 0;
}
#include<stdio.h>
#include<stdilb.h>
int main()
{int* parr = (int*)malloc(10 * sizeof(int));if (parr == NULL){perror("malloc");}for (int i = 0; i < 10; i++){//未进行初始化//打印printf("%d ", *parr + i);}return 0;
}

结果如下:
在这里插入图片描述

这些动态开辟的空间是存放在哪里呢?

如图:
在这里插入图片描述

2.2 free

申请了空间在使用完的时候肯定是要还回去的嘛,那怎么还呢?

C语言提供了另外一个函数free,这是专门用来做动态内存的释放和回收的,函数原型如下:
void free(void* ptr)

  • 如果参数ptr指向的空间不是动态内存的时候,free函数的行为是未被定义的
  • 如果参数ptrNULL指针,那么free函数什么都不会做

注意:传递给free函数的参数是要被释放空间的起始地址
代码如下:

#include<stdio.h>
#include<stdlib.h>
int main()
{int* parr = (int*)malloc(10 * sizeof(int));if (parr == NULL){perror("malloc");}for (int i = 0; i < 10; i++){//初始化*(parr + i) = i + 1;//打印printf("%d ", *parr + i);}//只用完动态申请的空间要进行释放free(parr);parr = NULL;return 0;
}

​free仅仅是将空间的使用权限还给了操作系统;
​但parr还指向原来的地址,这就成为野指针;
为了避免成为野指针,及时将parr置为NULL。

如果一直不用函数free来释放申请的空间,这样很可能会造成内存泄漏!!!

2.3 calloc

C语言还提供了一个函数叫calloccalloc函数也用来动态内存分配。原型如下:
void * calloc(size_t num, size_t size);

  • 函数的功能是将num个大小为size的元素开辟一块空间,并且会将开辟空间的每个字节初始化为0。
  • 函数calloc和函数malloc的区别就是calloc会在返回地址之前,把申请空间的每个字节初始化为0。

由于函数malloc比函数calloc少一步(将内存初始化),所以malloccalloc更快,如果更追求效率的话可以使用malloc,如果不想自己初始化的话可以使用calloc

代码如下:

int main()
{int* pca = (int*)calloc(10,sizeof(int));if (pca == NULL)//判断是否开辟失败{perror("calloc");exit(1);//直接退出程序}printf("calloc: ");for (int i = 0; i < 10; i++){printf("%d ", *pca + i);}printf("\n\n");int* pma = (int*)malloc(10 * sizeof(int));if (pma == NULL){perror("malloc");exit(1);}printf("malloc: ");for (int i = 0; i < 10; i++){printf("%d ", *pma + i);}return 0;
}

结果如图:
在这里插入图片描述

2.4 realloc

realloc函数能让动态内存管理更加灵活。

有些时候我们会发现我们申请的空间太小了,有时候又感觉申请的空间太大了,那么为了合理的使用空间,我们就会对申请的空间大小进行灵活的调整,那么realloc函数就能做到对动态空间大小的调整。

函数原型如下:
void* realloc(void* ptr, size_t size)

  • ptr是要被调整的内存地址
  • size是调整之后该内存的大小
  • 返回值为调整之后的内存空间的起始位置

2.4.1 realloc在调整内存空间有三种情况

  1. 原空间后面有足够的空间用来调整。
  2. 原空间后面没有足够空间用来调整,扩展的方法是:在堆空间上另找⼀个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。
  3. 空间调整失败,返回NULL(这是最坏的情况)
    如图所示
    在这里插入图片描述
    代码如下:
#include<stdio.h>
#include<stdlib.h>int main()
{//开辟int* parr = (int*)malloc(5 * sizeof(int));if (parr == NULL){perror("malloc");}//使用for (int i = 0; i < 5; i++){*(parr + i) = i + 1;}//假设要多插入5个int类型的数据//这时空间就不够了,需要调整int* parr = (int*)realloc(parr, 10 * sizeof(int));//上述代码合适吗//不合适,因为万一调整失败,会返回NULL//这时我原来开辟的空间就找不到了//所以正确的方法应该如下//先申请调整空间int* ptr = (int*)realloc(parr, 10 * sizeof(int));//调整成功if (ptr != NULL){//将申请的空间地址赋给parr(如果是情况二,parr的原空间已经被释放了)parr = ptr;}else{perror("realloc");}//处理要求……free(parr);return 0;
}

上述代码int* parr = (int*)realloc(parr, 10 * sizeof(int));代码合适吗?
完全不合适!!! 因为万一调整失败,会返回NULL;
这时我原来开辟的空间就找不到了。
所以正确的realloc使用方式是先创建一个指针变量来接收开辟的空间,如果判断ptr是否开辟成功,如果开辟成功。将ptr赋给parr

如果开辟失败parr指向的原空间也能继续使用。

补充:realloc也可以完成malloc的功能;
如果传的是NULL指针,realloc就会开辟一块新空间。

3.常见的动态内存的错误

3.1对NULL指针的解引用

具体如下:

#include<stdio.h>
#include<stdlib.h>int main()
{int* ptr = (int*)malloc(INT_MAX);*ptr = 20;//如果ptr是NULL,就会有问题return 0;
}

在这里插入图片描述
解决方法:开辟空间后,要第一时间判断是否空

3.2对动态开辟空间进行越界访问

具体如下:

#include<stdio.h>
#include<stdlib.h>void test()
{int i = 0;int* p = (int*)malloc(10 * sizeof(int));if (NULL == p){exit(EXIT_FAILURE);}for (i = 0; i <= 10; i++){*(p + i) = i;//当i是10的时候越界访问}free(p);
}int main()
{test();return 0;
}

解决方法:控制好访问的范围

3.3对非动态开辟空间使用free释放

具体如下:

#include<stdio.h>
#include<stdlib.h>int main()
{int a = 0;int* p = &a;//处理……free(p);//这样行吗,肯定不行!!!//a是局部变量,他开辟的空间是放在栈区的,而不是堆区的//free释放的是realloc、malloc、calloc开辟的空间(动态内存空间是在堆区的)return 0;
}
//这样行吗,肯定不行!!!
//a是局部变量,他开辟的空间是放在栈区的,而不是堆区的
//free释放的是realloc、malloc、calloc开辟的空间(动态内存空间是在堆区的)

在这里插入图片描述
编译都无法编译过去

解决方法:不要对非动态开辟空间进行释放!!!

3.4使用free释放的并不是动态开辟空间的起始位置

具体如下:

#include<stdio.h>
#include<stdlib.h>int main()
{int* p = (int*)malloc(100);p++;free(p);//p不再指向动态内存的起始位置return 0;
}

在这里插入图片描述
同样也无法编译过去
解决方法:传给free的时候确保是空间的起始地址

3.5对同一块内存进行对此释放

具体如下:

#include<stdio.h>
#include<stdlib.h>int main()
{int* p = (int*)malloc(100);free(p);free(p);return 0;
}

在这里插入图片描述
同样还是无法编译过去

解决方法:在第一次释放后及时的给p赋NULL

#include<stdio.h>
#include<stdlib.h>int main()
{int* p = (int*)malloc(100);free(p);//解决方法p = NULL;free(p);return 0;
}

前面也说过了,如果传给free函数的是NULLfree不会进行如何的操作。

3.6忘记释放动态开辟空间(内存泄漏)

具体如下:

void test()
{int* p = (int*)malloc(100);if (NULL != p){*p = 20;}
}
int main()
{test();//出来后test就被销毁了,就无法找到p所指向的空间了while (1);
}

忘记释放不再使用的空间会造成内存泄漏
释放动态内存有两个方法:

  1. 在不用的时候使用free函数进行释放

  2. 如果一直没有被free释放,当程序运行结束后,会由操作系统来回收
    解决方法:
    1.谁申请的空间谁释放,如果在函数里,那么在出函数前记得释放malloc/calloc/realloc要和free成对出现。

    2.如果不能释放(后续会用到),要告诉下一个使用者,记得释放动态开辟空间。

切记:动态开辟的空间⼀定要释放,并且正确释放。

结语

最后感谢您能阅读完此片文章,如果有任何建议或纠正欢迎在评论区留言。如果您认为这篇文章对您有所收获,点一个小小的赞就是我创作的巨大动力,谢谢!!!


http://www.ppmy.cn/embedded/26099.html

相关文章

Flink checkpoint 源码分析- Checkpoint barrier 传递源码分析

背景 在上一篇的博客里&#xff0c;大致介绍了flink checkpoint中的触发的大体流程&#xff0c;现在介绍一下触发之后下游的算子是如何做snapshot。 上一篇的文章: Flink checkpoint 源码分析- Flink Checkpoint 触发流程分析-CSDN博客 代码分析 1. 在SubtaskCheckpointCoo…

[附源码]SpringBoot+Vue网盘项目_仿某度盘

视频演示 [附源码]SpringBootVue网盘项目_仿某度盘 功能介绍 支持秒传支持视频音频播放、拖拽进度条、倍速播放等支持图片预览&#xff0c;旋转&#xff0c;放大支持多人一起上传&#xff0c;共享上传进度&#xff08;例如a上传苍老师学习资料到50%&#xff0c;突然b也上传苍老…

图像增强与特效-API调用实践-百度AI

百度智能云-图像增强-清晰度 文章目录 介绍实践Python 解释器获取token调用 最近在整理草稿箱。2022-07-25。我的token应该早过期了哈&#xff0c;需要大家去官网查看最新的api接口申请替换钥匙喔。 介绍 图像清晰度增强官网介绍&预览 API文档 API调用方式 ApiExplorer平…

IP如何安装SSL证书,实现加密传输

让我们理解一下SSL证书。SSL&#xff08;Secure Sockets Layer&#xff09;证书是一种数字证书&#xff0c;它利用数据加密技术&#xff0c;确保了互联网数据传输的安全。当网站安装了SSL证书后&#xff0c;所有的数据都会经过加密后再传输&#xff0c;这可以防止黑客窃取或篡改…

用C实现通讯录(详细讲解+源码)

前言 &#x1f4da;作者简介&#xff1a;爱编程的小马&#xff0c;正在学习C/C&#xff0c;Linux及MySQL.. &#x1f4da;以后会将数据结构收录为一个系列&#xff0c;敬请期待 ● 本期内容会给大家带来通讯录的讲解&#xff0c;主要是利用结构体来实现通讯录&#xff0c;该通讯…

《在合适的地方使用设计模式》

本文章属于专栏- 概述 - 《设计模式&#xff08;极简c版&#xff09;》-CSDN博客 计算系统&#xff0c;是物理世界的一部分。各行各业的历史经验告诉我们&#xff0c;没有一劳永逸&#xff0c;一成不变的模式&#xff0c;而软件系统的设计模式也一样。要正确地使用一个…

《Fundamentals of Power Electronics》——Buck、Boost、Buck-Boost三个电路的CCM-DCM工作特性总结

Buck、Boost、Buck-Boost这三个电路的CCM-DCM工作特性总结如下表所示&#xff1a; Buck、Boost、Buck-Boost这三个电路工作在DCM模式下电压传输比的对比图如下所示&#xff1a; 由上图可知&#xff0c;Buck-Boost电路的工作特性是一条斜率为的直线&#xff0c;Buck电路和Boost电…

IEEE独立出版 · EI检索 | 2024年第三届服务机器人国际会议 (ICoSR 2024)

会议简介 Brief Introduction 2024年第三届服务机器人国际会议(ICoSR 2024) 会议时间&#xff1a;2024年7月26-28日 召开地点&#xff1a;中国杭州 大会官网&#xff1a;www.iwosr.org 进入新时代&#xff0c;科技更新迭代快速发展&#xff0c;机器人不仅变得更加节能&#xff…