深度学习-线性代数

embedded/2024/10/19 7:29:22/

目录

  • 标量
  • 向量
  • 矩阵
    • 特殊矩阵
    • 特征向量和特征值
  • 标量由只有一个元素的张量表示
  • 将向量视为标量值组成的列表
  • 通过张量的索引来访问任一元素
  • 访问张量的长度
  • 只有一个轴的张量,形状只有一个元素
  • 通过指定两个分量m和n来创建一个形状为m×n的矩阵
  • 矩阵的转置
  • 对称矩阵的转置逻辑运算
  • clone()复制一个有相同形状的张量
  • 两个矩阵的按元素乘法称为:哈达玛积⊙
  • 计算元素的和
  • 表示任意形状张量的元素和
    • 参数axis=0求和
    • 参数axis=1求和
    • axis=[0,1] 必须满足三个维度以上
    • 示例说明1
    • 示例说明2
    • 示例说明3
  • 平均值(mean或average)
  • 计算总和或均值时保持轴数不变(即维度不丢失)使用keepdim=True
    • keepdim=True保持唯一,不丢失求和的维度,然后才能使用广播机制
  • 某个轴计算A元素的累积和(即前缀和)
  • 点积dot(参数1,参数2)
  • 矩阵向量积torch.mv(参数1,参数2)
  • 矩阵乘法
  • norm()函数
  • 向量元素的绝对值之和
  • F范式:矩阵元素的平方和的平方根

标量

在这里插入图片描述




向量

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

特殊矩阵

在这里插入图片描述
在这里插入图片描述

特征向量和特征值

在这里插入图片描述




标量由只有一个元素的张量表示

import torch
x = torch.tensor([3.0])
y = torch.tensor([2.0])
print(x + y)
print(x * y)
print(x / y)
print(x ** y)

结果:在这里插入图片描述




将向量视为标量值组成的列表

import torch
x = torch.arange(4)
print(x)

结果:在这里插入图片描述




通过张量的索引来访问任一元素

import torch
x = torch.arange(4)
print(x[3])

结果:在这里插入图片描述




访问张量的长度

import torch
x = torch.arange(4)
print(len(x))

结果:在这里插入图片描述




只有一个轴的张量,形状只有一个元素

import torch
x = torch.arange(4)
print(x.shape)

结果:在这里插入图片描述
一个长为1的列表




通过指定两个分量m和n来创建一个形状为m×n的矩阵

import torch
A = torch.arange(20).reshape((5, 4))
print(A)

结果:在这里插入图片描述




矩阵的转置

import torch
A = torch.arange(20).reshape((5, 4))
print(A.T)

结果:在这里插入图片描述




对称矩阵的转置逻辑运算

import torch
B = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
print(B == B.T)

结果:
在这里插入图片描述




clone()复制一个有相同形状的张量

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()
print(A)
print(A + B)

结果:
在这里插入图片描述




两个矩阵的按元素乘法称为:哈达玛积⊙

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()
print(A*B)

结果:
在这里插入图片描述

import torch
a = 2 #对矩阵中的每个元素+2
x = torch.arange(24).reshape(2, 3, 4) #reshape第一个参数可以看作是“块”或“层”的数量
print(x)
print(a + x)
print((a * x).shape)

结果:
在这里插入图片描述

print(a * x)

在这里插入图片描述




计算元素的和

import torch
x = torch.arange(4, dtype=torch.float32)
print(x)
print(x.sum())

结果:
在这里插入图片描述




表示任意形状张量的元素和

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A.shape)
print(A.sum())

结果:

在这里插入图片描述

参数axis=0求和

如果是二维则代表沿着行的方向(第一维)进行操作(从上到下)

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
A_sum_axis0 = A.sum(axis=0) 
print(A)
print(A_sum_axis0)
print(A_sum_axis0.shape)

结果:
在这里插入图片描述


参数axis=1求和

如果是二维则代表沿着列的方向(第二维)进行操作(从左到右)

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
A_sum_axis1 = A.sum(axis=1) 
print(A)
print(A_sum_axis1)
print(A_sum_axis1.shape)

结果:
在这里插入图片描述


axis=[0,1] 必须满足三个维度以上

对于三维及三维以上的,三个参数分别代表块/层方向(第一维度)、行方向(第二维度)、列方向(第三维度)
此时,就跟二维的有所区别

二维的:axis=0即第一维度------按行方向操作
        axis=1即第二维度------按列方向操作


三维即三维以上的:
         axis=0 即第一维度------按块/层方向操作
         axis=1 即第二维度------按行方向操作
         axis=2 即第三维度------按列方向操作

示例说明:
在这里插入图片描述





import torch
A = torch.arange(20*2, dtype=torch.float32).reshape(2, 5, 4)
print(A)
print(A.sum(axis=[0, 1]))

结果:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
然后,第一层和第二层求和可得:
在这里插入图片描述

示例说明1

import torch
a = torch.arange(20).reshape((5, 4))
print(a.shape)

显示:在这里插入图片描述


这里我们使用axis=0沿行方向求和(会丢失第一维度):

import torch
a = torch.arange(20).reshape((5, 4))
print(a.sum(axis=0).shape)

结果:在这里插入图片描述


这里我们使用axis=1沿列方向求和(会丢失第二维度):

import torch
a = torch.arange(20).reshape((5, 4))
print(a.sum(axis=1).shape)

结果:在这里插入图片描述


示例说明2

import torch
a = torch.arange(40).reshape((2, 5, 4))
print(a.shape)

显示:在这里插入图片描述


这里我们使用axis=0沿块/层方向求和(会丢失第一维度):

import torch
a = torch.arange(40).reshape((2, 5, 4))
print(a.sum(axis=0).shape)

结果:在这里插入图片描述



这里我们使用axis=1沿行方向求和(会丢失第二维度):

import torch
a = torch.arange(40).reshape((2, 5, 4))
print(a.sum(axis=1).shape)

结果:在这里插入图片描述


这里我们使用axis=2沿列方向求和(会丢失第三维度):

import torch
a = torch.arange(40).reshape((2, 5, 4))
print(a.sum(axis=2).shape)

结果:在这里插入图片描述


这里我们使用axis=[1, 2]沿行和列方向求和(会丢失第二、三维度):

import torch
a = torch.arange(40).reshape((2, 5, 4))
print(a.sum(axis=[1, 2]).shape)

结果:在这里插入图片描述


这里我们可以发现是先按照行方向求和计算,之后根据行方向计算的结果进行列方向求和计算。

import torch
a = torch.arange(40).reshape((2, 5, 4))
print(a)
print(a.sum(axis=1))
print(a.sum(axis=[1, 2]))
print(a.sum(axis=[1, 2]).shape)

结果:
在这里插入图片描述



示例说明3

keepdim=True使其不丢失维度,将维度变为1

import torch
a = torch.arange(40).reshape((2, 5, 4))
print(a.sum(axis=1, keepdims=True).shape)

结果:在这里插入图片描述


import torch
a = torch.arange(40).reshape((2, 5, 4))
print(a.sum(axis=[1, 2], keepdims=True).shape)

结果:在这里插入图片描述




平均值(mean或average)

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A.mean())
print(A.sum()/A.numel())

结果:
在这里插入图片描述




import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
print(A.mean(axis=0))

结果:
在这里插入图片描述




import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
print(A.sum(axis=0)/A.shape[0]) #求和的那个维度丢掉了,即按行方向的维度丢掉了

结果:
在这里插入图片描述
A.shape[0]表示第一个维度(行方向)的元素数
所以用A.shape[1]测试一下是不是元素数

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A)
print(A.sum(axis=1)/A.shape[1]) #求和的那个维度丢掉了,即按列方向的维度丢掉了

在这里插入图片描述




计算总和或均值时保持轴数不变(即维度不丢失)使用keepdim=True

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
sum_A = A.sum(axis=1, keepdim=True)
print(sum_A)

结果:

在这里插入图片描述
当调用.sum()方法(或类似的聚合方法,如.mean()、.max()等)时,你可以选择是否保持被聚合维度的形状。keepdim=True是一个参数,当设置为True时,它会使得聚合操作后的张量在被聚合的维度上仍然保持一个大小为1的维度,而不是完全去除这个维度。

keepdim=True保持唯一,不丢失求和的维度,然后才能使用广播机制

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
sum_A = A.sum(axis=1, keepdim=True)
print(A)
print(sum_A)
print(A/sum_A)

在这里插入图片描述




某个轴计算A元素的累积和(即前缀和)

累积和的意思是,对于每个位置,你会将该位置及其之前所有位置上的元素相加。第一个位置的元素保持不变(因为没有之前的元素可以相加),之后的每个位置的元素都是它自身和它之前所有元素的和。

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
print(A.cumsum(axis=0))

结果:
在这里插入图片描述




点积dot(参数1,参数2)

torch.dot只能对一维向量做点积

import torch
x = torch.arange(4, dtype=torch.float32)
print(x)
y = torch.ones(4, dtype=torch.float32)
print(y)
print(torch.dot(x, y))

结果:
在这里插入图片描述




矩阵向量积torch.mv(参数1,参数2)

在这里插入图片描述
A是一个m×n的矩阵,x是一个n×1的一列,所以得到一个m的列向量。
m列中第i个元素是点积 a i T a_i^T aiTx

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
x = torch.arange(4, dtype=torch.float32)
print(A.shape)
print(x.shape)
print(torch.mv(A, x))

结果:
在这里插入图片描述




矩阵乘法

矩阵乘法可以看作执行n次矩阵的向量积,然后拼接在一块,形成一个m×n的矩阵。
A:m×q的矩阵
B:q×n的矩阵
AB:m×n的矩阵

import torch
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = torch.ones(4, 3)
print(torch.mm(A, B))

结果:
在这里插入图片描述




norm()函数

第二范数是向量元素平方和的平方根
在这里插入图片描述

import torch
u = torch.tensor([3.0, -4.0])
print(torch.norm(u))

结果:在这里插入图片描述




向量元素的绝对值之和

在这里插入图片描述

import torch
u = torch.tensor([3.0, -4.0])
print(torch.abs(u).sum())

结果:在这里插入图片描述




F范式:矩阵元素的平方和的平方根

在这里插入图片描述

import torch
print(torch.norm(torch.ones((4, 9))))

结果:在这里插入图片描述


http://www.ppmy.cn/embedded/20777.html

相关文章

TCP案例之单聊与群聊

TCP案例之单聊与群聊 一、TCP案例之单聊 在基于TCP协议的单聊应用中,通常涉及客户端和服务器端的交互。 服务器端 建立服务器: 服务器端创建一个TCP Socket并绑定到一个特定的端口,开始监听来自客户端的连接请求。 接受连接: …

四、Flask进阶

Flask-Cache pip install flask-caching安装flask_cache初始化 # ext.py from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_caching import Cachedb SQLAlchemy() migrate Migrate() cache Cache(config{CACHE_TYPE: simple # 缓存…

探索矿业数字化平台:实现智能化采矿与管理

随着信息技术的迅猛发展,矿业领域也在逐步实现数字化转型。数字化平台的出现为矿业企业带来了更高效、更智能的采矿与管理方式。本文将探讨矿业数字化平台的意义、特点以及未来发展方向。 ### 1. 数字化平台的意义 传统的矿业生产和管理方式存在诸多问题&#xff…

《数据结构》(学习笔记)(王道)

一、绪论 1.1 数据结构的基本概念 数据:是信息的载体,是描述客观事物属性的数、字符以及所有输入到计算机中并被计算机程序识别和处理的符号的集合。(计算机程序加工的原料)数据元素:数据的基本单位,由若干…

机器学习-期末复习

本文的内容按照作者的课程考试要求书写,仅供复习参考。🌷🌷🌷欢迎大家指正! 机器学习是一种人工智能(AI)的分支领域,它致力于开发能够通过数据学习和改进的算法和模型。简而言之&…

AtCoder Regular Contest 176 C. Max Permutation(计数 分类讨论)

题目 思路来源 乱搞ac 题解 1. 如果有边的权值是1,意味着有两个点的权值都是1,无解 2. 如果一个点i被多个max条件控制,它的值不能超过这些max里最小的那个,记做up[i] 3. 如果同一个权值w对应的边不少于2条,这些边…

SpringBoot集成Log2j4指定外部配置文件源码解读

一、背景 程序读取外部log4j2.xml配置文件方式为启动命令添加了--logging.config/path/log4j2.xml,因系统安全整改,将/var/log/目录改为了700,程序使用非root启动时log4j2报错无法在/var/log目录下创建日志文件。经排查发现jar包的classpath…

力扣HOT100 - 199. 二叉树的右视图

解题思路&#xff1a; 相当于层序遍历&#xff0c;然后取每一层的最后一个节点。 class Solution {public List<Integer> rightSideView(TreeNode root) {if (root null) return new ArrayList<Integer>();Queue<TreeNode> queue new LinkedList<>…