第P8周:YOLOv5-C3模块实现

embedded/2025/4/1 2:00:04/
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

🚀我的环境:

  • 语言环境:python 3.12.6
  • 编译器:jupyter lab
  • 深度学习环境:Pytorch

前期准备

python">import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cpu')
python">import os,PIL,random,pathlibdata_dir = 'd:/Users/yxy/Desktop/weather_photos'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[5] for path in data_paths]
classeNames
['cloudy', 'rain', 'shine', 'sunrise']
python"># 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transform = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("d:/Users/yxy/Desktop/weather_photos",transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 1125Root location: d:/Users/yxy/Desktop/weather_photosStandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
python">total_data.class_to_idx
{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}
python">train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x17505e74d10>,<torch.utils.data.dataset.Subset at 0x17505e74710>)
python">batch_size = 4train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
python">for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

搭建模型

python">import torch.nn.functional as Fdef autopad(k, p=None):  # kernel, padding# Pad to 'same'if p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolutiondef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))class model_K(nn.Module):def __init__(self):super(model_K, self).__init__()# 卷积模块self.Conv = Conv(3, 32, 3, 2) # C3模块1self.C3_1 = C3(32, 64, 3, 2)# 全连接网络层,用于分类self.classifier = nn.Sequential(nn.Linear(in_features=802816, out_features=100),nn.ReLU(),nn.Linear(in_features=100, out_features=4))def forward(self, x):x = self.Conv(x)x = self.C3_1(x)x = torch.flatten(x, start_dim=1)x = self.classifier(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = model_K().to(device)
model
Using cpu devicemodel_K((Conv): Conv((conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(C3_1): C3((cv1): Conv((conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv3): Conv((conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(m): Sequential((0): Bottleneck((cv1): Conv((conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU()))(1): Bottleneck((cv1): Conv((conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU()))(2): Bottleneck((cv1): Conv((conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU())(cv2): Conv((conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(act): SiLU()))))(classifier): Sequential((0): Linear(in_features=802816, out_features=100, bias=True)(1): ReLU()(2): Linear(in_features=100, out_features=4, bias=True))
)
python"># 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 32, 112, 112]             864BatchNorm2d-2         [-1, 32, 112, 112]              64SiLU-3         [-1, 32, 112, 112]               0Conv-4         [-1, 32, 112, 112]               0Conv2d-5         [-1, 32, 112, 112]           1,024BatchNorm2d-6         [-1, 32, 112, 112]              64SiLU-7         [-1, 32, 112, 112]               0Conv-8         [-1, 32, 112, 112]               0Conv2d-9         [-1, 32, 112, 112]           1,024BatchNorm2d-10         [-1, 32, 112, 112]              64SiLU-11         [-1, 32, 112, 112]               0Conv-12         [-1, 32, 112, 112]               0Conv2d-13         [-1, 32, 112, 112]           9,216BatchNorm2d-14         [-1, 32, 112, 112]              64SiLU-15         [-1, 32, 112, 112]               0Conv-16         [-1, 32, 112, 112]               0Bottleneck-17         [-1, 32, 112, 112]               0Conv2d-18         [-1, 32, 112, 112]           1,024BatchNorm2d-19         [-1, 32, 112, 112]              64SiLU-20         [-1, 32, 112, 112]               0Conv-21         [-1, 32, 112, 112]               0Conv2d-22         [-1, 32, 112, 112]           9,216BatchNorm2d-23         [-1, 32, 112, 112]              64SiLU-24         [-1, 32, 112, 112]               0Conv-25         [-1, 32, 112, 112]               0Bottleneck-26         [-1, 32, 112, 112]               0Conv2d-27         [-1, 32, 112, 112]           1,024BatchNorm2d-28         [-1, 32, 112, 112]              64SiLU-29         [-1, 32, 112, 112]               0Conv-30         [-1, 32, 112, 112]               0Conv2d-31         [-1, 32, 112, 112]           9,216BatchNorm2d-32         [-1, 32, 112, 112]              64SiLU-33         [-1, 32, 112, 112]               0Conv-34         [-1, 32, 112, 112]               0Bottleneck-35         [-1, 32, 112, 112]               0Conv2d-36         [-1, 32, 112, 112]           1,024BatchNorm2d-37         [-1, 32, 112, 112]              64SiLU-38         [-1, 32, 112, 112]               0Conv-39         [-1, 32, 112, 112]               0Conv2d-40         [-1, 64, 112, 112]           4,096BatchNorm2d-41         [-1, 64, 112, 112]             128SiLU-42         [-1, 64, 112, 112]               0Conv-43         [-1, 64, 112, 112]               0C3-44         [-1, 64, 112, 112]               0Linear-45                  [-1, 100]      80,281,700ReLU-46                  [-1, 100]               0Linear-47                    [-1, 4]             404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------

训练模型

python"># 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss
python">def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss
python">import copyoptimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数epochs     = 20train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(best_model.state_dict(), PATH)print('Done')
Epoch: 1, Train_acc:71.9%, Train_loss:1.149, Test_acc:83.6%, Test_loss:0.724, Lr:1.00E-04
Epoch: 2, Train_acc:88.2%, Train_loss:0.352, Test_acc:89.8%, Test_loss:0.544, Lr:1.00E-04
Epoch: 3, Train_acc:93.7%, Train_loss:0.171, Test_acc:87.6%, Test_loss:0.815, Lr:1.00E-04
Epoch: 4, Train_acc:96.0%, Train_loss:0.133, Test_acc:88.9%, Test_loss:0.487, Lr:1.00E-04
Epoch: 5, Train_acc:98.7%, Train_loss:0.072, Test_acc:88.0%, Test_loss:0.702, Lr:1.00E-04
Epoch: 6, Train_acc:97.0%, Train_loss:0.087, Test_acc:86.2%, Test_loss:0.854, Lr:1.00E-04
Epoch: 7, Train_acc:98.7%, Train_loss:0.043, Test_acc:84.0%, Test_loss:1.055, Lr:1.00E-04
Epoch: 8, Train_acc:96.6%, Train_loss:0.134, Test_acc:90.2%, Test_loss:0.458, Lr:1.00E-04
Epoch: 9, Train_acc:97.9%, Train_loss:0.075, Test_acc:88.0%, Test_loss:1.103, Lr:1.00E-04
Epoch:10, Train_acc:98.4%, Train_loss:0.054, Test_acc:88.0%, Test_loss:0.702, Lr:1.00E-04
Epoch:11, Train_acc:98.1%, Train_loss:0.053, Test_acc:87.6%, Test_loss:0.702, Lr:1.00E-04
Epoch:12, Train_acc:99.0%, Train_loss:0.039, Test_acc:87.1%, Test_loss:1.036, Lr:1.00E-04
Epoch:13, Train_acc:99.1%, Train_loss:0.031, Test_acc:83.1%, Test_loss:1.187, Lr:1.00E-04
Epoch:14, Train_acc:98.7%, Train_loss:0.044, Test_acc:88.4%, Test_loss:0.808, Lr:1.00E-04
Epoch:15, Train_acc:99.4%, Train_loss:0.013, Test_acc:87.6%, Test_loss:0.984, Lr:1.00E-04
Epoch:16, Train_acc:99.6%, Train_loss:0.033, Test_acc:88.0%, Test_loss:0.800, Lr:1.00E-04
Epoch:17, Train_acc:99.2%, Train_loss:0.023, Test_acc:85.3%, Test_loss:1.094, Lr:1.00E-04
Epoch:18, Train_acc:97.3%, Train_loss:0.131, Test_acc:87.1%, Test_loss:1.158, Lr:1.00E-04
Epoch:19, Train_acc:99.4%, Train_loss:0.015, Test_acc:83.1%, Test_loss:1.220, Lr:1.00E-04
Epoch:20, Train_acc:100.0%, Train_loss:0.002, Test_acc:86.2%, Test_loss:0.975, Lr:1.00E-04
Done
python">import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

python">best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
python">epoch_test_acc, epoch_test_loss
(0.9022222222222223, 0.4556905715816308)
python"># 查看是否与我们记录的最高准确率一致
epoch_test_acc
0.9022222222222223

总结
本文中利用YOLOv5算法中的C3模块搭建网络,其中C3是 YOLOV5中的改进版 CSP 结构,主要用于特征提取和计算优化。它将输入特征分为两部分,一部分直接跳过,另一部分通过多个 Bottleneck结构进行深度处理,最后进行拼接并通过 1*1卷积融合信息。这样可以减少计算量,同时增强特征表达,提高目标检测的精度和效率。


http://www.ppmy.cn/embedded/177606.html

相关文章

每天认识一个设计模式-桥接模式:在抽象与实现的平行宇宙架起彩虹桥

一、前言&#xff1a;虚拟机桥接的启示 使用过VMware或者Docker的同学们应该都接触过网络桥接&#xff0c;在虚拟机网络配置里&#xff0c;桥接模式是常用的网络连接方式。选择桥接模式时&#xff0c;虚拟机会通过虚拟交换机与物理网卡相连&#xff0c;获取同网段 IP 地址&…

【PySpark大数据分析概述】01 大数据分析概述

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PySpark大数据分析与应用 ⌋ ⌋ ⌋ PySpark作为Apache Spark的Python API&#xff0c;融合Python易用性与Spark分布式计算能力&#xff0c;专为大规模数据处理设计。支持批处理、流计算、机器学习 (MLlib) 和图计算 (GraphX)&am…

Pyside6介绍和开发第一个程序

Pyside6介绍 PySide6 是一个用于创建 图形用户界面&#xff08;GUI&#xff09; 的 Python 库&#xff0c;它是 Qt 框架的官方 Python 绑定。Qt 是一个功能强大的跨平台 C 框架&#xff0c;广泛用于开发桌面应用程序、移动应用程序和嵌入式系统。PySide6 允许开发者使用 Pytho…

Polhemus FastScan 单摄像头3D激光扫描器

FastSCAN Cobra是Polhemus公司研制的手持激光扫描仪。与以前的产品比较&#xff0c;它节省了30&#xff05;的费用&#xff0c;体积也减小了一半 &#xff0c;但仍然保留了所有功能&#xff0c;使用和携带都更加方便。作为超小的手持激光扫描仪,FastSCAN Cobra对扫描三维物体具…

HCIP(VLAN综合实验)

实验拓补图 实验分析 一、实验目的 掌握VLAN的创建和配置方法理解VLAN在局域网中的作用学习如何通过VLAN实现网络隔离和通信 二、实验环境 交换机&#xff08;SW1、SW2、SW3&#xff09;个人电脑&#xff08;PC1、PC2、PC3、PC4、PC5、PC6&#xff09;路由器&#xff08;R1…

记录一次TDSQL事务太大拆过binlog阈值报错

记录一次TDSQL事务太大拆过binlog阈值报错处理过程 1、排查任何类型数据库故障的第一步&#xff0c; 同步实例信息、报错内容、报错时间段、当前是否恢复、如何感知到数据库问题的、对应用有什么影响、系统允许的时间窗口。 2、明确报错内容为单次写入binlog量超过阈值 3、登陆…

【极速版 -- 大模型入门到进阶】LORA:大模型轻量级微调

文章目录 &#x1f30a; 有没有低成本的方法微调大模型&#xff1f;&#x1f30a; LoRA 的核心思想&#x1f30a; LoRA 的初始化和 r r r 的值设定&#x1f30a; LoRA 实战&#xff1a;LoraConfig参数详解 论文指路&#xff1a;LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE M…

鸿蒙项目源码-记账本app个人财物管理-原创!原创!原创!

鸿蒙记账项目源码个人财务管理含文档包运行成功ArkTS语言。 我一个月写的原创作品&#xff0c;请尊重原创。 原创作品&#xff0c;盗版必究&#xff01;&#xff01;&#xff01; api12 SDK5.0.0仅适用于最新的2024版本DevEco studio 共9个页面&#xff1a;广告倒计时页、登录、…