有必要使用 Oracle 向量数据库吗?

embedded/2025/3/13 20:39:02/

向量数据库最主要的特点是让传统的只能基于具体值/关键字的数据检索,进化到了可以直接基于语义的数据检索。这在AI时代至关重要!

回到标题问题:是否有必要使用 Oracle 向量数据库?

这实际还要取决于你的具体应用需求。

客观来讲,Oracle 23ai 及其向量数据库功能在企业级应用中有一定优势,特别是在与现有 Oracle 生态整合时。以下是几个考虑点:

✅ 适用 Oracle 向量数据库的场景:

  • 已有 Oracle 生态:如果你的数据已经存储在 Oracle Database,直接使用 Oracle 的向量功能(如 AI Vector Search)可以减少系统复杂度,避免额外的数据 ETL 操作。
  • 混合查询(向量 + 关系型数据):Oracle 支持 向量搜索 + 传统 SQL 查询 的混合模式,适合 企业级 BI、数据分析、AI 赋能的业务应用。
  • 高可用性 & 安全性:Oracle 具备企业级的 数据安全、事务处理、可扩展性,相比一些开源向量数据库更可靠。
  • Exadata / ExaCC 加持:如果你的数据库运行在 Exadata 或 ExaCC,Oracle 的向量查询性能更优。

后面笔者工作需要,将测试下Oracle数据库的Vector能力,也会不定期分享。

在此之前,肯定会有不太熟悉Oracle发展的小伙伴会困惑,怎么感觉Oracle是老牌的关系型数据库,咋啥时候成了向量数据库?

答案是,Oracle是多模(Multi-model)数据库,主流模型都支持,早已不单是传统的关系型。

如果你去业界公认的 db-engines 查数据库排名,那么Complete ranking一直都是Oracle没疑问,但是在细分领域,Oracle也OK吗?

  • DB-Engines Ranking - popularity ranking of database management systems

从下图可以看到,DB综合排名Oracle一直还是第一位:

DB-Engines Ranking of Vector DBMS-complete-top15

那么继续查询下 Vector DBMS的排名:

  • DB-Engines Ranking - popularity ranking of vector DBMS

向量数据库排名:DB-Engines Ranking of Vector DBMS

DB-Engines Ranking of Vector DBMS

咦?默认老大是ES(Elasticsearch)?貌似没有看到Oracle的身影?
别着急,这是因为默认未考虑到多模态,勾选上 include secondary database models,你会发现ES直接下滑到第五位,Oracle又出现在了榜首:

DB-Engines Ranking of Vector DBMS-2

其实Oracle早已是多模(Multi-model)数据库,除了最近AI时代很火的向量数据库之外,其他相对常见的比如文档数据库、图数据库、空间数据库,甚至不算常见的RDF全部都支持。

如果去细分领域默认查询,提到 Document stores 你可能首先想到的是 MongoDB;提到 Graph DBMS 你可能首先想到的是图数据库 Neo4j,提到Spatial DBMS,你首先想到的是空间数据 PostGIS。但是你只要把这个 include secondary database models 勾选上,就会发现Oracle已经全部支持这些类型的DB,并处于领先地位。

所以,如果是企业级应用,比如 AI 赋能业务、BI 分析、数据库增强搜索,且你本身就有用到 Oracle 数据库,站在纯技术角度考量,在 Oracle 基础上继续扩展更多的可能场景,是个比较省心省力的选择。

但这也要求企业中的Oracle DBA能够不断扩展自己的技能,拥抱新技术,勇于承担新时代下的挑战。

不可停留在固有的认知上,那个曾经连大对象(LOB)都不允许存到库中的宝贵经验,在这个AI新时代的背景下,恐怕早已经过时了。

此外,在AI时代下,我们不得不面临的一个惨痛现状是,传统意义上的纯运维管理DBA,即便是资深级别,路也会越来越窄了。

但路在脚下,未来也还长,主动拥抱变化,允许一切发生,一起加油突破自己吧!共勉~

转载出处:https://www.cnblogs.com/jyzhao/p/18751798/shi-fou-you-bi-yao-shi-yong-oracle-xiang-liang-shu

行业拓展

分享一个面向研发人群使用的前后端分离的低代码软件——JNPF,适配国产化,支持主流数据库和操作系统。

提供五十几种高频预制组件,包括表格、图表、列表、容器、表单等,内置常用的后台管理系统使用场景和基本需求,配置了流程引擎、表单引擎、报表引擎、图表引擎、接口引擎、门户引擎、组织用户引擎等可视化功能引擎,超过数百种功能控件以及大量实用模板,使得在拖拉拽的简单操作下,也能完成开发。

对于工程师来说,灵活的使用高质量预制组件可以极大的节省时间,将更多精力花费在更有创造性和建设性的代码上。


http://www.ppmy.cn/embedded/172343.html

相关文章

SqlServer数据库报错紧急或可疑无法访问的修复过程,亲测有效。

当 SQL Server 数据库被标记为 SUSPECT 状态时,表示数据库可能由于事务日志损坏、数据文件丢失或其他严重问题而无法正常启动。以下是一个详细的恢复步骤,基于搜索结果中的信息和常见的最佳实践: 恢复步骤 1. 确认数据库状态 将database-n…

自学网络安全(黑客技术)2025年 —90天学习计划

🤟 基于入门网络安全/黑客打造的:👉黑客&网络安全入门&进阶学习资源包 前言 什么是网络安全 网络安全可以基于攻击和防御视角来分类,我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术,而“蓝队”、“…

2020年蓝桥杯第十一届CC++大学B组(第一次)真题及代码

目录 1A:跑步训练(填空5分_模拟) 2B:纪念日(填空5分_日期计算) 3C:合并检测(填空10分_数学) 4D:REPEAT程序(填空10分_模拟) 5E&a…

用Python和Docker-py打造高效容器化应用管理利器

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着容器化技术的发展,Docker已成为现代化应用部署的核心工具。然而,手动管理容器在规模化场景下效率低下。本文深入探讨如何利用Python结…

3806.小郑花式喝酒(java)

题目: 解题思路: 当每杯中酒最少时,小郑喝的最多。即杯中酒满足1,2,3,4......n的递增1的数列关系时小郑喝的最多。同时若无法满足这样的基本要求,则不满足步步高升的倒酒礼仪。 import java.ut…

wps word 正文部分段前段后间距调整无用

用了网上的方法,对我来说没用: https://zhidao.baidu.com/question/1894016349633589548.html 操作: 选中相关内容,菜单栏-开始 格式改为正文 调整段前段后间距

angular 使用webpack-bundle-analyzer分析包

其实angular框架开发t团队不建议使用webpack-bundle-analyzer,而是 source-map-explorer 原文 出处 但dddd ,还是用webpack-bundle-analyzer 1.安装 npm i webpack-bundle-analyzer --save-dev 2.此时运行命令,就可以得到 ng build --…

springboot集成neo4j搭建知识图谱后端项目(一)

springboot集成neo4j搭建知识图谱后端项目(一) 1.概述2.安装neo4j3.项目搭建3.1.引入pom依赖3.2.添加application.yml配置3.3.添加Neo4jConfig.java配置3.4.添加Neo4jService接口3.5.添加Neo4jServiceImpl实现类3.7.调用 4.总结 1.概述 getee项目开源地址…