2025最新Transformer模型及深度学习前沿技术应用

embedded/2025/3/6 12:50:57/

第一章、注意力(Attention)机制

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。

2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)

3、注意力机制的主要类型:键值对注意力机制(Key-Value Attention)、自注意力(Self-Attention)与多头注意力(Multi-Head Attention)、Soft Attention 与 Hard Attention、全局(Global)与局部(Local)注意力

4、注意力机制的优化与变体:稀疏注意力(Sparse Attention)、自适应注意力(Adaptive Attention)、动态注意力机制(Dynamic Attention)、跨模态注意力机制(Cross-Modal Attention)

5、注意力机制的可解释性与可视化技术:注意力权重的可视化(权重热图)

6、案例演示     

7、实操练习

第二章、自然语言处理(NLP)领域的Transformer模型

1、Transformer模型的提出背景(从RNN、LSTM到注意力机制的演进、Transformer模型的诞生背景及其在自然语言处理和计算视觉中的重要性)

2、Transformer模型的进化之路(RCTM→RNN Encoder-Decoder→Bahdanau Attention→Luong Attention→Self Attention)

3、Transformer模型拓扑结构(编码器、解码器、多头自注意力机制、前馈神经网络、层归一化和残差连接等)

4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)

5、BERT模型的工作原理(输入表示、多层Transformer编码器、掩码语言模型MLM、下一句预测NSP)

6、GPT系列模型(GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4)的工作原理(单向语言模型、预训练、自回归生成、Zero-shot Learning、上下文学习、RLHF人类反馈强化学习、多模态架构)

7、案例演示       

8、实操练习

第三章、计算视觉(CV)领域的Transformer模型

1、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化、ViT模型的Python代码实现)

2、Swin Transformer模型(提出的背景、基本架构、与ViT模型的比较、分层架构、窗口机制、位置编码、Transformer编码器、模型的训练与优化、模型的Python代码实现)

3、DETR模型(提出的背景、基本架构、与RCNN、YOLO系列模型的比较、双向匹配损失与匈牙利匹配算法、匹配损失与框架损失、模型的训练与优化、模型的Python代码实现)

4、案例演示       

5、实操练习

第四章、时间序列建模与预测的大语言模型

1、时间序列建模的大语言模型技术细节(基于Transformer的时间序列预测原理、自注意力机制、编码器-解码器结构、位置编码)

2、时间序列建模的大语言模型训练

3、Time-LLM模型详解(拓扑结构简介、重新编程时间序列输入、Prompt-as-Prefix (PaP)等)

4、基于TimeGPT的时间序列预测(TimeGPT工作原理详解、TimeGPT库的安装与使用)

5、案例演示与实操练习

第五章、目标检测算法

1、目标检测任务与图像分类识别任务的区别与联系。

2、两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。

3、一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)。

4、案例演示          

5、实操练习

第六章、目标检测大语言模型

1、基于大语言模型目标检测的工作原理(输入图像的特征提取、文本嵌入的生成、视觉和语言特征的融合、目标检测与输出)

2、目标检测领域的大语言模型概述(Pix2Seq、Grounding DINO、Lenna等)

3、案例演示与实操练习

第七章、语义分割的大语言模型

1、基于大语言模型的语义分割的工作原理(图像特征提取、文本嵌入生成、跨模态融合、分割预测)

2、语义分割领域的大语言模型概述(ProLab、Segment Anything Model、CLIPSeg、Segment Everything Everywhere Model等)

3、案例演示与实操练习

第八章、LLaVA多模态大语言模型

1、LLaVA的核心技术与工作原理(模型拓扑结构讲解)

2、LLaVA与其他多模态模型的区别(LLaVA模型的优势有哪些?)

3、LLaVA的架构与训练(LLaVA的多模态输入处理与特征表示、视觉编码器与语言模型的结合、LLaVA的训练数据与预训练过程)

4、LLaVA的典型应用场景(图像问答、图像生成与描述等)

5、案例演示与实操练习

第九章、物理信息神经网络

(PINN) 1、物理信息神经网络的背景(物理信息神经网络(PINNs)的概念及其在科学计算中的重要性、传统数值模拟方法与PINNs的比较)

2、PINN工作原理:物理定律与方程的数学表达、如何将物理定律嵌入到神经网络模型中?PINN的架构(输入层、隐含层、输出层的设计)、物理约束的形式化(如何将边界条件等物理知识融入网络?)损失函数的设计(数据驱动与物理驱动的损失项)

3、案例演示         

4、实操练习

第十章、生成式模型

1、变分自编码器VAE(自编码器的基本结构与工作原理、降噪自编码器、掩码自编码器、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)。

2、生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数、对抗样本的构造方法)。

3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)。

4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)。

5、案例演示            

6、实操练习

第十一章、自监督学习模型

1、自监督学习的基本概念(自监督学习的发展背景、自监督学习定义、与有监督学习和无监督学习的区别)

2、经典的自监督学习模型的基本原理、模型架构及训练过程(对比学习: SimCLR、MoCo;生成式方法:AutoEncoder、GPT;预文本任务:BERT掩码语言模型)

3、自监督学习模型的Python代码实现

4、案例演示            

5、实操练习

第十二章、图神经网络

1、图神经网络的背景和基础知识(什么是图神经网络图神经网络的发展历程?为什么需要图神经网络?)

2、图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。

3、图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。

4、图卷积网络(GCN)的工作原理。

5、图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。

6、案例演示        

7、实操练习

第十三章、强化学习

1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?

2、Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)。

3、深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)

4、案例演示         

5、实操练习

第十四章、深度学习模型可解释性与可视化方法

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解。

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征。

5、案例演示         

6、实操练习

第十五章、神经架构搜索(Neural Architecture Search, NAS)

1、NAS的背景和动机(传统的神经网络设计依赖经验和直觉,既耗时又可能达不到最优效果。通过自动搜索,可以发现传统方法难以设计的创新和高效架构。)

2、NAS的基本流程:搜索空间定义(确定搜索的网络架构的元素,如层数、类型的层、激活函数等。)、搜索策略(随机搜索、贝叶斯优化、进化算法、强化学习等)、性能评估

3、NAS的关键技术:进化算法(通过模拟生物进化过程,如变异、交叉和选择,来迭代改进网络架构)、强化学习(使用策略网络来生成架构,通过奖励信号来优化策略网络)、贝叶斯优化(利用贝叶斯方法对搜索空间进行高效的全局搜索,平衡探索和利用)

4、案例演示         

5、实操练习


http://www.ppmy.cn/embedded/170480.html

相关文章

deepseek助力运维和监控自动化

将DeepSeek与Agent、工作流及Agent编排技术结合,可实现IT运维与监控的智能化闭环管理。以下是具体应用框架和场景示例: 一、智能Agent体系设计 多模态感知Agent 日志解析Agent:基于DeepSeek的NLP能力,实时解析系统日志中的语义&a…

服务器中常见的冗余技术有哪些?

服务器中的冗余是指系统中的一种备份机制,企业可以使用冗余技术来保证服务器的高可用性和数据的稳定性,冗余技术可以在服务器架构中增加冗余组件,来提供冗余备份和故障转移功能,保证服务器可以在发生故障时可以继续正常运行&#…

Linux总结

1 用户与用户组管理 1.1 用户与用户组 //linux用户和用户组 Linux系统是一个多用户多任务的分时操作系统 使用系统资源的用户需要账号进入系统 账号是用户在系统上的标识,系统根据该标识分配不同的权限和资源 一个账号包含用户和用户组 //用户分类 超级管理员 UID…

OpenFeign 学习笔记

OpenFeign 学习笔记 一、基础入门 1.1 简介 OpenFeign 是基于声明式的 REST 客户端,用于简化服务间远程调用。(编程式 REST 客户端(RestTemplate)) 通过接口注解方式定义 HTTP 请求,自动实现服务调用。 …

【大模型学习】第二章 大模型技术中的Prompt

目录 摘要 1. 意义与价值 1.1 降低技术门槛 1.2 提升模型灵活性 1.3 优化资源利用率 2. 核心思想与方法论 2.1 理解模型机制 2.2 结合上下文 2.3 迭代优化 3. Prompt 的典型构成 3.1 目标说明 3.2 输入数据 3.3 输出规范 3.4 示例与模板 3.5 语气与风格 4. 技术…

分布式 ID 设计方案

分布式ID设计方案在分布式系统中至关重要,它必须满足全局唯一性、可扩展性、排序性(有时)、避免碰撞、去中心化、可用性和紧凑性等多个要求。以下是一些常见的分布式ID设计方案: 一、UUID(通用唯一标识符)…

【智能机器人开发全流程:硬件选型、软件架构与ROS实战,打造高效机器人系统】

文章目录 1. 硬件层设计(1) 传感器选型(2) 计算平台 2. 软件架构设计(1) 核心模块划分(2) 通信框架 3. 关键实现步骤(1) 硬件-软件接口开发(2) SLAM与导航实现(3) 仿真与测试 4. 典型框架示例基于ROS的移动机器人分层架构 5. 优化与扩展6. 开源项目参考 1. 硬件层设计 (1) 传感…

kafka小白基础知识

一、Kafka 入门 (一)Kafka 简介 Kafka 是一个开源的分布式流处理平台,最初由 LinkedIn 开发,后来贡献给了 Apache 软件基金会。它被设计用于处理实时数据流,具有高吞吐量、可扩展性、持久性和容错性等特点。Kafka 主要…