DeepSeek 开源周(2025/0224-0228)进度全分析:技术亮点、调用与编程及潜在影响

embedded/2025/3/6 3:33:43/

在这里插入图片描述

DeepSeek 技术开源周期间所有开放下载资源的目录及简要说明:


1. FlashMLA

  • 描述:针对 Hopper GPU 优化的高效 MLA 解码内核,专为处理可变长度序列设计,显著提升大语言模型(LLM)的解码效率。
  • 性能:内存受限配置下可达 3000 GB/s 带宽,计算受限配置下可达 580 TFLOPS 算力(H800 GPU)。
  • 开源地址:FlashMLA GitHub
  • 适配情况:已成功适配云天励飞 DeepEdge10 平台,相关代码已提交至 Gitee。

2. DeepEP

  • 描述:首个面向 MoE(混合专家)模型的专家并行(EP)通信库,优化全到全通信,支持 FP8 数据格式,显著降低通信开销。
  • 特性
    • 高吞吐内核:适用于训练和推理的预填充任务。
    • 低延迟内核:优化推理解码速度,采用纯 RDMA 技术。
    • 支持 NVLink 和 RDMA 混合通信。
  • 开源地址:DeepEP GitHub

3. DeepGEMM

  • 描述:专为 FP8 矩阵乘法优化的轻量级 GEMM 库,支持稠密和 MoE 布局,动态优化资源分配以提升算力效率。
  • 性能:在 Hopper GPU 上可实现 1350+ FP8 TFLOPS 性能,核心代码仅 300 行,基于即时编译(JIT)技术。
  • 开源地址:DeepGEMM GitHub

4. DualPipe

  • 描述:一种双向流水线并行算法,专为 V3/R1 训练设计,实现计算与通信阶段的高效重叠,减少流水线气泡。
  • 开源地址:DualPipe GitHub

5. 专家并行负载均衡器(EPLB)

  • 描述:动态平衡 GPU 负载,通过冗余专家策略和分组路由优化数据流量,减少节点间通信开销。
  • 开源地址:EPLB GitHub

6. 3FS 文件系统

  • 描述:高性能分布式文件系统,专为现代 SSD 和 RDMA 网络设计,支持高吞吐数据访问,适用于 AI 训练和推理中的数据密集型任务。
  • 性能
    • 集群聚合读取吞吐量达 6.6 TiB/s。
    • 单节点 KVCache 查找峰值吞吐量超过 40 GiB/s。
  • 开源地址:3FS GitHub

7. Smallpond

  • 描述:基于 3FS 的轻量级数据处理框架,支持 PB 级数据集处理,操作简便,无需长期运行的服务。
  • 开源地址:Smallpond GitHub

8. 其他资源

  • DeepSeek-R1 模型权重:Hugging Face 仓库
  • DeepSeek-R1 官方论文:arXiv 论文
  • DeepSeek 提示词库:官方提示词库

概览

DeepSeek 技术开源周共发布了 5 个核心代码库(FlashMLA、DeepEP、DeepGEMM、DualPipe、EPLB)以及 2 个配套工具(3FS、Smallpond),覆盖了从计算、通信到存储的全栈优化。这些资源不仅显著提升了 AI 模型的训练和推理效率,还通过开源方式降低了高性能计算技术的应用门槛,为 AI 社区提供了强大的技术支持。

在这里插入图片描述

DeepSeek 开源进度全分析:技术亮点、协同关系及潜在影响


1. 技术亮点与核心功能

1.1 FlashMLA(开源进度 1/5)
  • 功能
    FlashMLA 是一个针对 Hopper GPU 优化的高效 MLA(Multi-Layer Attention)解码内核,专为处理可变长度序列设计。它通过优化内存访问和计算效率,显著提升了推理阶段的性能。

  • 性能

    • 在内存受限配置下,FlashMLA 可实现 3000 GB/s 的带宽
    • 在计算受限配置下,FlashMLA 的算力可达 580 TFLOPS(基于 H800 GPU)。
    • 这些性能指标使其成为当前最先进的解码内核之一。
  • 应用场景

    • 主要用于自然语言处理(NLP)中的推理阶段,特别是大语言模型(LLM)的文本生成任务。
    • 适用于需要处理长序列的场景,如对话生成、文档摘要等。
  • 技术基础

    • 结合了 FlashAttention 2&3 的注意力机制优化和 CUTLASS 的高效矩阵计算技术。
    • 通过分块调度和内存优化,减少冗余计算和内存访问。
  • 创新点

    • 支持可变长度序列的高效处理,避免了传统方法中的填充浪费。
    • 通过动态调度机制,最大化 GPU 利用率。
      以下是 FlashMLA 的编程调用方法及详细说明,帮助开发者快速上手并集成到自己的项目中。

1. 安装与依赖

1.1 硬件与软件需求
  • 硬件:NVIDIA Hopper GPU(如 H800)。
  • 软件
    • CUDA 12.3 及以上版本。
    • PyTorch 2.0 及以上版本。
1.2 安装步骤
  1. 克隆 FlashMLA 代码库:
    git clone https://github.com/deepseek-ai/FlashMLA.git
    cd FlashMLA
    
  2. 安装依赖:
    python setup.py install
    

2. 编程调用

2.1 导入模块

在 Python 脚本中导入 FlashMLA 的核心模块:

python">from flash_mla import get_mla_metadata, flash_mla_with_kvcache
2.2 获取元数据

使用 get_mla_metadata 函数获取分块调度元数据:

python">tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv
)
  • 参数说明
    • cache_seqlens:缓存序列长度。
    • s_q * h_q // h_kv:查询序列长度与头数的乘积除以键值头数。
    • h_kv:键值头数。
  • 返回值
    • tile_scheduler_metadata:分块调度元数据。
    • num_splits:分块数量。
2.3 调用解码内核

使用 flash_mla_with_kvcache 函数执行解码操作:

python">for i in range(num_layers):o_i, lse_i = flash_mla_with_kvcache(q_i, kvcache_i, block_table, cache_seqlens, dv,tile_scheduler_metadata, num_splits, causal=True)
  • 参数说明
    • q_i:当前层的查询张量。
    • kvcache_i:当前层的键值缓存。
    • block_table:块表,用于管理缓存块。
    • cache_seqlens:缓存序列长度。
    • dv:值向量的维度。
    • tile_scheduler_metadata:分块调度元数据。
    • num_splits:分块数量。
    • causal:是否启用因果掩码(默认为 True)。
  • 返回值
    • o_i:当前层的输出张量。
    • lse_i:当前层的对数求和指数(Log-Sum-Exp)。

3. 示例代码

以下是一个完整的调用示例:

python">import torch
from flash_mla import get_mla_metadata, flash_mla_with_kvcache# 假设输入参数
batch_size = 8
num_heads = 16
seq_len = 1024
head_dim = 64
cache_seqlens = torch.tensor([seq_len] * batch_size, dtype=torch.int32)
s_q = seq_len
h_q = num_heads
h_kv = num_heads
dv = head_dim# 初始化输入张量
q_i = torch.randn(batch_size, num_heads

http://www.ppmy.cn/embedded/170375.html

相关文章

物联网桥梁监测设备集成GPS和红外

桥梁监测设备是确保桥梁结构安全、延长使用寿命的重要工具。集成 GPS 和 红外 技术的桥梁监测设备,可以提供更全面的监测功能,包括结构变形、温度变化、环境因素等。以下是集成GPS和红外的桥梁监测设备的顶级功能: 一、核心功能 集成GPS和红…

FFmpeg 命令详解(完整详细版)

FFmpeg 是一个强大的多媒体处理工具,支持音视频转换、剪辑、合并、滤镜、压缩等操作。本文整理了 常见 FFmpeg 命令,并配有 详细说明,帮助你高效使用 FFmpeg。 1. FFmpeg 基础命令 1.1 查看 FFmpeg 版本 ffmpeg -version查看 FFmpeg 版本、…

23种设计模式之《备忘录模式(Memento)》在c#中的应用及理解

程序设计中的主要设计模式通常分为三大类,共23种: 1. 创建型模式(Creational Patterns) 单例模式(Singleton):确保一个类只有一个实例,并提供全局访问点。 工厂方法模式&#xff0…

国科大——数据挖掘(0812课程)——考试真题

前沿: 此文章记录了国科大数据挖掘(0812)课程的考试真题。 注: 考试可以携带计算器,毕竟某些题需要计算log,比如:决策树等。 2016年 1. Suppose a hospital tested the age and body fat for …

ECharts中yAxisIndex的作用

yAxisIndex 通常在数据可视化库(如 ECharts 等)中使用,用于指定系列数据对应的 Y 轴索引。下面为你详细介绍其作用和使用场景: 作用 在一个图表中,可能会有多个 Y 轴(比如双 Y 轴图表)&#x…

数据库操作命令详解:CREATE、ALTER、DROP 的使用与实践

引言​ 数据库是存储和管理数据的核心工具,而 ​DDL(Data Definition Language,数据定义语言)​​ 是构建和调整数据库结构的基石。本文将通过实际示例,详细讲解 CREATE(创建)、ALTER&#xff0…

RAG检索增强生成(Retrieval-Augmented Generation)介绍(双模态架构:检索子系统、生成子系统)实现知识获取与内容生成的协同

文章目录 增强生成(RAG)技术:原理、架构与前沿实践1. RAG技术架构剖析1.1 技术融合范式- **检索子系统**- **生成子系统** 2. 核心组件与工作流程2.1 数据预处理管线- **多粒度分块策略**- **特征增强技术** 2.2 混合检索引擎 3. 性能优化关键…

anolis8.9-k8s1.32-系统基本配置

一、系统信息 # cat /etc/anolis-release Anolis OS release 8.9 二、 firewalld设置 firewall-cmd --zonepublic --add-port6443/tcp --permanentfirewall-cmd --zonepublic --add-port10250-10259/tcp --permanentfirewall-cmd --zonepublic --add-port30000-32767/tcp -…