策略模式的C++实现示例

embedded/2025/3/5 8:36:37/

核心思想

策略模式是一种行为型设计模式,它定义了一系列算法,并将每个算法封装在独立的类中,使得它们可以互相替换。策略模式让算法的变化独立于使用它的客户端,从而使得客户端可以根据需要动态切换算法,而不需要修改其代码。策略模式的核心是将算法与使用算法的客户端解耦,使得算法可以独立于客户端变化。

**Context:**持有一个策略对象的引用,负责调用策略的具体实现。
**Strategy:**定义所有支持的算法的公共接口。
**ConcreteStrategy:**实现Strategy接口,提供具体的算法实现。

使用场景

多种算法切换:如排序算法(快速排序、冒泡排序等)或支付方式(信用卡、支付宝等)。
避免条件语句:当代码中有大量条件分支用于选择不同行为时,可以用策略模式替代。
算法复用:当多个类需要共享相同的行为,但行为的具体实现不同时。
动态切换行为:如游戏中的角色在不同状态下使用不同的攻击策略。
测试与调试:策略模式可以方便地替换算法的实现,便于测试和调试。

解决的问题

代码重复问题:
如果多个类使用相同的算法,但算法的实现分散在各处,会导致代码重复。策略模式将算法集中管理,避免重复。

紧耦合问题:
在传统设计中,算法直接嵌入在客户端代码中,导致客户端与算法紧耦合。策略模式通过将算法抽象为接口,解耦了客户端和具体算法。

扩展性问题:
新增算法时,需要修改客户端代码。策略模式允许动态添加新算法,而无需修改现有代码。

条件分支问题:
当代码中有大量条件分支用于选择不同行为时,策略模式可以将其替换为对象的多态调用,使代码更清晰。

优点

**开闭原则:**新增算法无需修改现有代码,只需添加新的策略类。
**解耦:**将算法的实现与使用分离,提高代码的灵活性和可维护性。
**复用性:**策略类可以在不同上下文中复用。
**简化测试:**每个策略类可以独立测试。

缺点

**类数量增加:**每个算法都需要一个单独的类,可能导致类的数量增多。
**客户端需要了解策略:**客户端需要知道有哪些策略,并选择合适的策略。
**性能开销:**策略模式可能引入额外的对象创建和调用开销。

示例代码

如下代码中,Context类(即客户端)是稳定、可以不变的,变化的是策略,而策略是根据运行时的实际情况来选择的。通过继承Strategy类并重写execute()接口实现策略的扩展。

#include <iostream>
#include <memory>// 抽象策略接口
class Strategy {
public:virtual void execute() const = 0;virtual ~Strategy() = default;  // 虚析构函数,确保正确释放资源
};// 具体策略A
class ConcreteStrategyA : public Strategy {
public:void execute() const override {std::cout << "执行策略A" << std::endl;}
};// 具体策略B
class ConcreteStrategyB : public Strategy {
public:void execute() const override {std::cout << "执行策略B" << std::endl;}
};// 上下文类,持有策略对象并调用其方法
class Context {
private:std::unique_ptr<Strategy> strategy;  // 使用智能指针管理策略对象public:// 构造函数,允许传入策略对象Context(std::unique_ptr<Strategy> s) : strategy(std::move(s)) {}// 设置策略void setStrategy(std::unique_ptr<Strategy> s) {strategy = std::move(s);}// 执行策略void executeStrategy() const {if (strategy) {strategy->execute();} else {std::cout << "未设置策略" << std::endl;}}
};int main() {// 创建上下文对象,并初始化为策略AContext context(std::make_unique<ConcreteStrategyA>());context.executeStrategy();  // 输出: 执行策略A// 动态切换到策略Bcontext.setStrategy(std::make_unique<ConcreteStrategyB>());context.executeStrategy();  // 输出: 执行策略Breturn 0;
}

代码说明

​Strategy:抽象策略接口,定义了所有具体策略类必须实现的方法execute()。
​ConcreteStrategyA​ 和 ​ConcreteStrategyB:具体策略类,分别实现了不同的算法或行为。
​Context:上下文类,持有一个策略对象的引用,并提供了设置策略和执行策略的方法。
​智能指针:使用std::unique_ptr管理策略对象的生命周期,避免内存泄漏。

运行结果

执行策略A
执行策略B

总结

通过策略模式,我们可以将算法的实现与使用算法的环境解耦,使得算法可以独立于客户端代码进行扩展和修改。这种设计模式特别适用于需要动态切换算法的场景。


http://www.ppmy.cn/embedded/170136.html

相关文章

主题巴巴主题源码 合辑打包下载+主题巴巴SEO插件 | WordPress主题模版

主题巴巴WordPress主题合辑打包下载&#xff0c;包含博客一号、博客二号、博客X、门户一号、门户手机版、图片一号、杂志一号、自媒体一号、自媒体二号和主题巴巴SEO插件。

Vue.js Vue 测试工具:Vue Test Utils 与 Jest

Vue.js Vue 测试工具&#xff1a;Vue Test Utils 与 Jest 在 Vue.js 的开发过程中&#xff0c;编写和执行测试是确保应用质量和稳定性的关键步骤。Vue Test Utils 和 Jest 是 Vue.js 官方推荐的测试工具&#xff0c;二者结合使用&#xff0c;可以高效地进行单元测试和集成测试…

Rust 面向对象特性解析:对象、封装与继承

1. Rust 的对象概念 在《设计模式&#xff1a;可复用面向对象软件的基础》&#xff08;Design Patterns: Elements of Reusable Object-Oriented Software&#xff09;一书中&#xff0c;作者将对象定义为&#xff1a; 对象是数据和操作该数据的过程的封装体。 按照这个定义&a…

Python+Vue+数据可视化的考研知识共享平台(源码+论文+讲解+安装+调试+售后)

感兴趣的可以先收藏起来&#xff0c;还有大家在毕设选题&#xff0c;项目以及论文编写等相关问题都可以给我留言咨询&#xff0c;我会一一回复&#xff0c;希望帮助更多的人。 程序介绍 近些年来&#xff0c;科技以一种近乎狂飙突进的态势呈爆发式发展&#xff0c;成果之丰硕…

【密码学——基础理论与应用】李子臣编著 第二章 古典密码 课后习题

免责声明 这里都是自己搓或者手写的。 里面不少题目感觉有问题或者我的理解有偏颇&#xff0c;请大佬批评指正&#xff01; 不带思考抄作业的请自动退出&#xff0c;我的并非全对&#xff0c;仅仅提供思维&#xff01; 题目 2.1 def decrypt(m):s[]for i in range(len(m)):i…

Leetcode 3474. Lexicographically Smallest Generated String

Leetcode 3474. Lexicographically Smallest Generated String 1. 解题思路2. 代码实现 题目链接&#xff1a;3474. Lexicographically Smallest Generated String 1. 解题思路 这一题思路上主要就是分成两步&#xff1a; 找到所有为T的位置&#xff0c;此时其对应的位置及…

大模型在高血压预测及围手术期管理中的应用研究报告

目录 一、引言 1.1 研究背景与意义 1.2 研究目的 1.3 国内外研究现状 二、大模型预测高血压的原理与方法 2.1 常用大模型介绍 2.2 数据收集与预处理 2.3 模型训练与验证 三、术前风险预测与手术方案制定 3.1 术前风险因素分析 3.2 大模型预测术前风险的方法与结果 …

HSPF 水文模型建模方法与案例分析实践技术应用

在水文模拟领域&#xff0c;HSPF 模型&#xff08;Hydrological Simulation Program Fortran&#xff09;与 SWAT 模型一样&#xff0c;都是备受瞩目的水文模型软件。HSPF 模型因其强大的功能和简便的操作&#xff0c;在全球范围内得到了广泛应用。该模型不仅能够在缺乏测量数据…