RT-DETR融合YOLOv12中的R-ELAN结构

embedded/2025/3/5 4:49:43/


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


《YOLOv12: Attention-Centric Real-Time Object Detectors》

一、 模块介绍

        论文链接:https://arxiv.org/abs/2502.12524

        代码链接:https://gitcode.com/gh_mirrors/yo/yolov12

论文速览:

       长期以来,增强YOLO框架的网络架构一直至关重要,但一直专注于基于cnn的改进,尽管注意力机制在建模能力方面已被证明具有优越性。这是因为基于注意力的模型无法匹配基于cnn的模型的速度。本文提出了一种以注意力为中心的YOLO框架,即YOLOv12,与之前基于cnn的YOLO框架的速度相匹配,同时利用了注意力机制的性能优势。YOLOv12在精度和速度方面超越了所有流行的实时目标检测器。例如,YOLOv12-N在T4 GPU上以1.64ms的推理延迟实现了40.6% mAP,以相当的速度超过了高级的YOLOv10-N / YOLOv11-N 2.1%/1.2% mAP。这种优势可以扩展到其他模型规模。YOLOv12还超越了改善DETR的端到端实时检测器,如RT-DETR /RT-DETRv2: YOLOv12- s比RT-DETR- r18 / RT-DETRv2-r18运行更快42%,仅使用36%的计算和45%的参数。更多的比较见图1。

总结:本文将其中的R-ELAN思想融入其他模块。


二、二创融合模块

2.1 相关二创模块及所需参数

        该模块可如图加入到RepNCSPELAN4、RepC3自研等模块中,代码见群文件,所需参数如下。

RepNCSPELAN4-变式模块 所需参数:(c1, c2, c3, c4, n)

CCRI及变式模块 所需参数:(c1, c2, k, n, lightconv, shortcut, scale, e, act)

RepC4及变式模块 所需参数:(c1, c2, n, e)

        其中,RepNCSPELAN4模块的代码如下:

class RepNCSPELAN4_R_ELAN(nn.Module):"""CSP-ELAN."""def __init__(self, c1, c2, c3, c4, n=1):"""Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""super().__init__()self.c = c3 // 2self.cv1 = Conv(c1, self.c, 1, 1)self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))self.cv4 = Conv(self.c + (2 * c4), c2, 1, 1)def forward(self, x):"""Forward pass through RepNCSPELAN4 layer."""y = [self.cv1(x)]y.extend((m(y[-1])) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'# [depth, width, max_channels]l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, CCRI, [128, 5, True, False]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 4, CCRI, [256, 3, True, True]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 4, RepNCSPELAN4_R_ELAN, [512, 512, 256, 1]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, CCRI, [1024, 3, True, False]]head:- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2- [-1, 1, AIFI, [1024, 8]]- [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1- [[-2, -1], 1, Concat, [1]]- [-1, 2, RepC4, [256]] # 15, fpn_blocks.0- [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0- [[-2, -1], 1, Concat, [1]] # cat backbone P4- [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0- [[-1, 16], 1, Concat, [1]] # cat Y4- [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0- [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1- [[-1, 11], 1, Concat, [1]] # cat Y5- [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1- [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

 2.2 修改train.py文件

       创建Train_RT脚本用于训练。

from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'if __name__ == '__main__':model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')# model.load('yolov8n.pt')model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入修改好的yaml路径,运行即可训。



http://www.ppmy.cn/embedded/170091.html

相关文章

2025国家护网HVV高频面试题总结来了04(题目+回答)

网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 一、HVV行动面试题分类 根据面试题的内容,我们将其分为以下几类: 漏洞利用与攻击技术 …

AI数据分析:用DeepSeek做数据清洗

在当今数据驱动的时代,数据分析已成为企业和个人决策的重要工具。随着人工智能技术的快速发展,AI 驱动的数据分析工具正在改变我们处理和分析数据的方式。本文将着重介绍如何使用 DeepSeek 进行数据清洗。 数据清洗是数据分析的基础,其目的是…

【FL0090】基于SSM和微信小程序的球馆预约系统

🧑‍💻博主介绍🧑‍💻 全网粉丝10W,CSDN全栈领域优质创作者,博客之星、掘金/知乎/b站/华为云/阿里云等平台优质作者、专注于Java、小程序/APP、python、大数据等技术领域和毕业项目实战,以及程序定制化开发…

SQL 中UPDATE 和 DELETE 语句的深入理解与应用

在 SQL 中,UPDATE和DELETE语句是用于操作表数据的重要工具,它们允许我们对已存在的数据进行修改和删除。 一、UPDATE 语句 (一)基本语法 UPDATE语句的基本语法如下: UPDATE table_name SET column1 value1, colum…

在CentOS 7上为YUM安装的Nginx添加模块及第三方模块stream

写在前面: ❌ 你还在这样算排期吗? 撕日历、数周末、翻放假通知…… 项目Deadline总算错?调休上班日漏算? “明明该完成了,怎么又撞上节假日?” ✨ 现在,一切交给「 微信小程序:排期…

年后寒假总结及计划安排

年后寒假总结 年后主要学习了微服务,nacos (服务注册中心),feign(远程调用),网关,双token(相较于之前更加规范,更加符合企业级),配置管理 ,mybati…

【pytest框架源码分析三】pluggy源码分析之hook注册调用流程

pluggy的hook调用,最重要的就是使用了__call__魔法函数,这个函数能够在我们调用实例时,自动调用这个函数,无需自己手动调用。 前面介绍了各个类的方法,这里简述下pluggy的调用流程(主要介绍主流程&#xff…

PyTorch 深度学习快速入门教程

PyTorch 深度学习快速入门教程 🚀 PyTorch 是一个 灵活且易用 的深度学习框架,支持 动态图计算,广泛用于 学术研究 和 工业应用。本教程将带你快速掌握 PyTorch 的 基本用法,涵盖 张量(Tensor)操作、自动求…