数据结构(初阶)(七)----树和二叉树(堆,堆排序)

embedded/2025/3/4 7:50:53/

八,树与二叉树

概念与结构

树是⼀种⾮线性的数据结构,它是由 n(n>=0) 个有限结点组成⼀个具有层次关系的集合。把它叫做树是因为它看起来像⼀棵倒挂的树,也就是说它是根朝上,⽽叶朝下的。

• 有⼀个特殊的结点,称为根结点,根结点没有前驱结点。

• 除根结点外,其余结点被分成 M(M>0) 个互不相交的集合 T1、T2、……、Tm ,其中每⼀个集合Ti(1 <= i <= m) ⼜是⼀棵结构与树类似的⼦树。每棵⼦树的根结点有且只有⼀个前驱,可以有 0 个或多个后继。因此,树是递归定义的。

树形结构中,⼦树之间不能有交集,否则就不是树形结构

⼦树是不相交的(如果存在相交就是图了)

除了根结点外,每个结点有且仅有⼀个⽗结点

⼀棵N个结点的树有N-1条边

树的相关术语

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

⽗结点/双亲结点:若⼀个结点含有⼦结点,则这个结点称为其⼦结点的⽗结点; 如上图:A是B的⽗结点

⼦结点/孩⼦结点:⼀个结点含有的⼦树的根结点称为该结点的⼦结点; 如上图:B是A的孩⼦结点

结点的度:⼀个结点有⼏个孩⼦,他的度就是多少;⽐如A的度为6,F的度为2,K的度为0

树的度:⼀棵树中,最⼤的结点的度称为树的度; 如上图:树的度为 6

叶⼦结点/终端结点:度为 0 的结点称为叶结点; 如上图: B、C、H、I… 等结点为叶结点

分⽀结点/⾮终端结点:度不为 0 的结点; 如上图: D、E、F、G… 等结点为分⽀结点

兄弟结点:具有相同⽗结点的结点互称为兄弟结点(亲兄弟); 如上图: B、C 是兄弟结点

结点的层次:从根开始定义起,根为第 1 层,根的⼦结点为第 2 层,以此类推;

树的⾼度或深度:树中结点的最⼤层次; 如上图:树的⾼度为 4

结点的祖先:从根到该结点所经分⽀上的所有结点;如上图: A 是所有结点的祖先

路径:⼀条从树中任意节点出发,沿⽗节点-⼦节点连接,达到任意节点的序列;⽐如A到Q的路径为:A-E-J-Q;H到Q的路径H-D-A-E-J-Q

⼦孙:以某结点为根的⼦树中任⼀结点都称为该结点的⼦孙。如上图:所有结点都是A的⼦孙

森林:由 m(m>0) 棵互不相交的树的集合称为森林;

树的表示

树有很多种表⽰⽅式如:双亲表⽰法,孩⼦表⽰法、孩⼦双亲表⽰法以及孩⼦兄弟表⽰法等。我们这⾥就简单的了解其中最常⽤的孩⼦兄弟表⽰法

struct TreeNode 
{ struct TreeNode* child; // 左边开始的第⼀个孩⼦结点 struct TreeNode* brother; // 指向其右边的下⼀个兄弟结点 int data; // 结点中的数据域 
};

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

二叉树

概念与结构

在树形结构中,我们最常⽤的就是⼆叉树,⼀棵⼆叉树是结点的⼀个有限集合,该集合由⼀个根结点 加上两棵别称为左⼦树和右⼦树的⼆叉树组成或者为空。

⼆叉树具备以下特点:

1,⼆叉树不存在度⼤于 2 的结点

2,⼆叉树的⼦树有左右之分,次序不能颠倒,因此⼆叉树是有序树

注意:对于任意的⼆叉树都是由以下⼏种情况复合⽽成的

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

满⼆叉树

⼀个⼆叉树,如果每⼀个层的结点数都达到最⼤值,则这个⼆叉树就是满⼆叉树。也就是说,如果⼀个⼆叉树的层数为 K ,且结点总数是 2k − 1 ,则它就是满⼆叉树。

完全⼆叉树

完全⼆叉树是效率很⾼的数据结构,完全⼆叉树是由满⼆叉树⽽引出来的。对于深度为 K 的,有 n 个

结点的⼆叉树,当且仅当其每⼀个结点都与深度为K的满⼆叉树中编号从 1 ⾄ n 的结点⼀⼀对应时称之为完全⼆叉树。要注意的是满⼆叉树是⼀种特殊的完全⼆叉树。

⼆叉树性质

根据满⼆叉树的特点可知:

1)若规定根结点的层数为 1 ,则⼀棵⾮空⼆叉树的第i层上最多有 2i−1 个结点

2)若规定根结点的层数为 1 ,则深度为 h 的⼆叉树的最⼤结点数是 2h − 1

3)若规定根结点的层数为 1 ,具有 n 个结点的满⼆叉树的深度 h = log2 (n + 1) ( log

以2为底, n+1 为对数)

⼆叉树存储结构

顺序结构
链式结构

实现顺序结构的二叉树

⼀般堆使⽤顺序结构的数组来存储数据,堆是⼀种特殊的⼆叉树,具有⼆叉树的特性的同时,还具备其他的特性。

小堆(小根堆):堆顶是堆里最小的数据

大堆(小根堆):堆顶是堆里最大的数据

堆的性质

堆中某个结点的值总是不⼤于或不⼩于其⽗结点的值;

堆总是⼀棵完全⼆叉树。

⼆叉树性质

对于具有 n 个结点的完全⼆叉树,如果按照从上⾄下从左⾄右的数组顺序对所有结点从

0开始编号,则对于序号为 i 的结点有:

1,若 i>0 , i 位置结点的双亲序号: (i-1)/2 ; i=0 , i 为根结点编号,⽆双亲结点

2,若 2i+1<n ,左孩⼦序号: 2i+1 , 2i+1>=n 否则⽆左孩⼦

3,若 2i+2<n ,右孩⼦序号: 2i+2 , 2i+2>=n 否则⽆右孩⼦

堆的实现

堆底层结构为数组

头文件Heap.h
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>//堆的结构
typedef int HPDataType;
typedef struct Heap
{HPDataType* arr;int size;		//有效数据个数int capacity;	//空间大小
}HP;
//初始化
void HPInit(HP* php);
//销毁
void HPDestory(HP* php);
//打印
void HPPrint(HP* php);
//入堆
void HPPush(HP* php, HPDataType x);
//判断堆是否为空
bool HPEmpty(HP* php);
//向下调整
void AdjustDowm(HPDataType* arr, int parent, int n);
//出堆
void HPPop(HP* php);
//取堆顶元素
HPDataType* HPTop(HP* php);
实现Heap.c
#define _CRT_SECURE_NO_WARNINGS
#include"Heap.h"//初始化
void HPInit(HP* php)
{assert(php);php->arr = NULL;php->size = php->capacity = 0;
}//销毁
void HPDestory(HP* php)
{assert(php);if (php->arr)free(php->arr);php->arr = NULL;php->size = php->capacity = 0;
}//打印
void HPPrint(HP* php)
{assert(php);for (int i = 0; i < php->size; i++){printf("%d ", php->arr[i]);}printf("\n");
}//交换
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//调整
void AdjustUp(HPDataType* arr,int child)
{int parent = (child - 1) / 2;while (child > 0){//控制小堆,大堆if (arr[child] > arr[parent]){Swap(&arr[child], &arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//入堆
void HPPush(HP* php, HPDataType x)
{assert(php);//判断空间if (php->size == php->capacity){int newcapacity = php->capacity == 0 ? 4 : 2 * php->capacity;HPDataType* tmp = (HPDataType*)realloc(php->arr,sizeof(HPDataType) * newcapacity);if (tmp == NULL){perror("HPPush()::realloc fail");exit(1);}php->arr = tmp;php->capacity = newcapacity;}//插入php->arr[php->size] = x;//调整,向上调整AdjustUp(php->arr,php->size - 1);++php->size;
}//判断堆是否为空
bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}//向下调整
void AdjustDowm(HPDataType* arr,int parent,int n)
{int child = 2 * parent + 1;while (child < n){//控制大堆,小堆//保证右孩子同样不越界if (child + 1 < n && arr[child] < arr[child + 1]){child++;}if (arr[child] > arr[parent]){Swap(&arr[child], &arr[parent]);parent = child;child = 2 * parent + 1;}else{break;}}}//出堆
//出的是堆顶元素
//1,堆顶元素与最后一个(size-1)元素交换
//2,调整,向下调整,假设成大堆,比较左右孩子,较大的与父结点比较。
void HPPop(HP* php)
{//首先堆不能为空assert(!HPEmpty(php));//先交换Swap(&php->arr[0], &php->arr[php->size - 1]);--php->size;//调整AdjustDowm(php->arr,0,php->size);
}//取堆顶元素
HPDataType* HPTop(HP* php)
{assert(!HPEmpty(php));return php->arr[0];
}
测试文件test.c
#define _CRT_SECURE_NO_WARNINGS
#include"Heap.h"void test()
{HP hp;HPInit(&hp);HPPush(&hp, 15);HPPush(&hp, 10);HPPush(&hp, 56);HPPush(&hp, 70);HPPush(&hp, 45);HPPrint(&hp);//HPPop(&hp);//HPPop(&hp);//HPPop(&hp);//HPPrint(&hp);while (!HPEmpty(&hp)){int top = HPTop(&hp);printf("%d ", top);HPPop(&hp);}HPDestory(&hp);
}int main()
{test();return 0;
}

堆排序

//交换
void Swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}//向上调整
void AdjustUp(HPDataType* arr,int child)
{int parent = (child - 1) / 2;while (child > 0){//控制小堆<,大堆>if (arr[child] > arr[parent]){Swap(&arr[child], &arr[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}//向下调整
void AdjustDowm(int* arr,int parent,int n)
{int child = 2 * parent + 1;while (child < n){//控制大堆<,小堆>//保证右孩子同样不越界if (child + 1 < n && arr[child] > arr[child + 1]){child++;}//大堆>,小堆<if (arr[child] < arr[parent]){Swap(&arr[child], &arr[parent]);parent = child;child = 2 * parent + 1;}else{break;}}}//堆排序(借助堆的思想实现)
void HPSort2(int* arr, int n)
{建堆,向下调整,升序大堆,降序小堆//assert(arr);//for (int i = (n - 1 - 1) / 2; i >= 0; i--)//{//	AdjustDowm(arr, i, n);//}建堆,向上调整assert(arr);for (int i = 0; i < n; i++){AdjustUp(arr, i);}//堆排序int end = n - 1;while (end > 0){Swap(&arr[0],&arr[end]);AdjustDowm(arr, 0, end);end--;}
}int main()
{test();int arr[] = { 2,3,5,1,9,7,5,8,6,0 };int n = sizeof(arr) / sizeof(arr[0]);for (int i = 0; i < n; i++){printf("%d ", arr[i]);}printf("\n");HPSort2(&arr, n);for (int i = 0; i < n; i++){printf("%d ", arr[i]);}printf("\n");return 0;
}

我们可以发现建堆时,使用向上(向下)调整算法都可以,那么哪种更好一点呢?

从时间复杂度来进行比较,向上调整算法建堆的时间复杂度为O(n ∗ log2 n) ,向下调整算法建堆的时间复杂度为O(n),所以一般使用向下调整算法建堆

下面是分析过程:

向上调整算法建堆时间复杂度
向下调整算法建堆时间复杂度
TOP-K问题

n >> k


http://www.ppmy.cn/embedded/169855.html

相关文章

SQL命令详解之操作数据库

操作数据库 SQL是用于管理和操作关系型数据库的标准语言。数据库操作是SQL的核心功能之一&#xff0c;主要用于创建、修改和删除数据库对象&#xff0c;如数据库、表、视图和索引等。以下是SQL中常见的数据库操作命令及其功能简介&#xff1a; 1. 查询数据库 查询所有的数据库…

c# winfrom增加进度条

1. 在窗体上添加一个 ProgressBar 控件 在您的窗体中添加一个 ProgressBar 控件&#xff0c;并设置其属性为 Marquee 或 Continuous。这个控件用来展示连接测试的进度。 2. 初始化 BackgroundWorker 在窗体的构造函数中&#xff0c;初始化并配置 BackgroundWorker。假设您的…

使用mermaid查看cursor程序生成的流程图

一、得到cursor生成的流程图文本 cursor写的程序正常运行后&#xff0c;在对话框输入框中输入诸如“请生成扫雷的代码流程图”&#xff0c;然后cursor就把流程图给生成了&#xff0c;但是看到的还是文本的样子&#xff0c;保留这部分内容待用 二、注册一个Mermaid绘图账号 …

网络原理----TCP/IP(3)

核心机制七----延时应答 默认情况下&#xff0c;接收方都是在收到数据报的第一时间&#xff0c;就返回ack&#xff0c;但是可以通过延时返回ack的方式来提高效率&#xff0c;理论上不是100%提高效率&#xff0c;但还是有一定帮助的。 因为如果接收数据的主机⽴刻返回ACK应答,…

深入讨论C语言的可能抽象:部分对设计模式的思考

目录 评估DIP原则 争论语言的类型强弱 从编译器实现层次上谈论 从抽象自然角度 回归对本篇文章目的的核心讨论——如何有效的使用C语言完成对场景编程的抽象呢&#xff1f; 静态多态——使用C语言的编译宏的静态多态技术 动态多态——函数指针 类比OOP中属性赋予的办法&…

2025年3月2日笔记

问题&#xff1a;编写一个程序&#xff0c;计算 1 到 100 之间所有偶数的和 解题思路&#xff1a; 1.因为要计算1 到 100 之间的数&#xff0c;所以要用到for循环便利 2.因为题中让我们求和&#xff0c;所以要用到累加器 累加器公式&#xff1a;int m0 mmi 3.因为要计…

如何通过Python网络爬虫技术应对复杂的反爬机制?

要使用Python网络爬虫技术绕过复杂的反爬虫机制&#xff0c;可以采取以下几种策略&#xff1a; 设置User-Agent&#xff1a;通过设置不同的User-Agent&#xff0c;模拟正常用户的浏览器访问&#xff0c;避免被网站识别为爬虫。可以使用fake_useragent库来随机生成User-Agent。…

网络原理---TCP/IP

活动发起人小虚竹 想对你说&#xff1a; 这是一个以写作博客为目的的创作活动&#xff0c;旨在鼓励大学生博主们挖掘自己的创作潜能&#xff0c;展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴&#xff0c;那么&#xff0c;快来参加吧&#xff01…