姿态矩阵/旋转矩阵/反对称阵

embedded/2025/2/27 7:58:27/

在这里插入图片描述
物理意义,端点矢量=角速率叉乘本身向量;
负号是动系b看固定系i是相反的;

一个固定
在惯性导航解算中,旋转矢量的叉乘用于描述姿态矩阵的微分方程。你提到的公式中, ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb×表示的是一个向量叉乘的矩阵形式,通常称为叉乘矩阵反对称矩阵。以下是详细的解释和计算规则:


1. 叉乘矩阵的定义

对于任意三维向量 ω = [ ω x , ω y , ω z ] T \boldsymbol{\omega} = [\omega_x, \omega_y, \omega_z]^T ω=[ωx,ωy,ωz]T,其叉乘矩阵 ω × \boldsymbol{\omega} \times ω×定义为:
ω × = ( 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ) \boldsymbol{\omega} \times = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} ω×= 0ωzωyωz0ωxωyωx0

这个矩阵的作用是将向量 ω \boldsymbol{\omega} ω的叉乘运算转化为矩阵乘法运算。对于任意向量 r \boldsymbol{r} r,有:
ω × r = ω × r \boldsymbol{\omega} \times \boldsymbol{r} = \boldsymbol{\omega} \times \boldsymbol{r} ω×r=ω×r

2. 姿态矩阵微分方程的推导

在惯性导航中,姿态矩阵 C b i \boldsymbol{C}_b^i Cbi 表示从载体坐标系( b b b 系)到惯性坐标系( i i i 系)的旋转矩阵。其微分方程为:
C ˙ b i = C b i ( ω i b b × ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i (\boldsymbol{\omega}_{ib}^b \times) C˙bi=Cbi(ωibb×)
其中:

  • ω i b b \boldsymbol{\omega}_{ib}^b ωibb 是载体相对于惯性系的角速度,在载体坐标系( b b b 系)下表示。
  • ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb× 是角速度向量 ω i b b \boldsymbol{\omega}_{ib}^b ωibb的叉乘矩阵

3. 叉乘矩阵的作用

叉乘矩阵 ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb× 的作用是将角速度向量 ω i b b \boldsymbol{\omega}_{ib}^b ωibb的叉乘运算转化为矩阵乘法运算。具体来说:

  • 对于任意向量 r b \boldsymbol{r}^b rb,有:
    ω i b b × r b = ω i b b × r b \boldsymbol{\omega}_{ib}^b \times \boldsymbol{r}^b = \boldsymbol{\omega}_{ib}^b \times \boldsymbol{r}^b ωibb×rb=ωibb×rb
  • 对于矩阵 C b i \boldsymbol{C}_b^i Cbi,有:
    C ˙ b i = C b i ( ω i b b × ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i (\boldsymbol{\omega}_{ib}^b \times) C˙bi=Cbi(ωibb×)

4. 具体计算规则

假设角速度向量 ω i b b = [ ω x , ω y , ω z ] T \boldsymbol{\omega}_{ib}^b = [\omega_x, \omega_y, \omega_z]^T ωibb=[ωx,ωy,ωz]T,则其叉乘矩阵为:
ω i b b × = ( 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ) \boldsymbol{\omega}_{ib}^b \times = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} ωibb×= 0ωzωyωz0ωxωyωx0

姿态矩阵 C b i \boldsymbol{C}_b^i Cbi的微分方程为:
C ˙ b i = C b i ⋅ ( 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i \cdot \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} C˙bi=Cbi 0ωzωyωz0ωxωyωx0

具体计算时, C ˙ b i \dot{\boldsymbol{C}}_b^i C˙bi的每一列是 C b i \boldsymbol{C}_b^i Cbi的对应列与叉乘矩阵的乘积。


5. 示例

假设:
ω i b b = ( ω x ω y ω z ) , C b i = ( c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ) \boldsymbol{\omega}_{ib}^b = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}, \quad \boldsymbol{C}_b^i = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} ωibb= ωxωyωz ,Cbi= c11c21c31c12c22c32c13c23c33

则:
C ˙ b i = C b i ⋅ ( 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i \cdot \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} C˙bi=Cbi 0ωzωyωz0ωxωyωx0

计算结果为:
C ˙ b i = ( c 11 ⋅ 0 + c 12 ⋅ ω z + c 13 ⋅ ( − ω y ) c 11 ⋅ ( − ω z ) + c 12 ⋅ 0 + c 13 ⋅ ω x c 11 ⋅ ω y + c 12 ⋅ ( − ω x ) + c 13 ⋅ 0 c 21 ⋅ 0 + c 22 ⋅ ω z + c 23 ⋅ ( − ω y ) c 21 ⋅ ( − ω z ) + c 22 ⋅ 0 + c 23 ⋅ ω x c 21 ⋅ ω y + c 22 ⋅ ( − ω x ) + c 23 ⋅ 0 c 31 ⋅ 0 + c 32 ⋅ ω z + c 33 ⋅ ( − ω y ) c 31 ⋅ ( − ω z ) + c 32 ⋅ 0 + c 33 ⋅ ω x c 31 ⋅ ω y + c 32 ⋅ ( − ω x ) + c 33 ⋅ 0 ) \dot{\boldsymbol{C}}_b^i = \begin{pmatrix} c_{11} \cdot 0 + c_{12} \cdot \omega_z + c_{13} \cdot (-\omega_y) & c_{11} \cdot (-\omega_z) + c_{12} \cdot 0 + c_{13} \cdot \omega_x & c_{11} \cdot \omega_y + c_{12} \cdot (-\omega_x) + c_{13} \cdot 0 \\ c_{21} \cdot 0 + c_{22} \cdot \omega_z + c_{23} \cdot (-\omega_y) & c_{21} \cdot (-\omega_z) + c_{22} \cdot 0 + c_{23} \cdot \omega_x & c_{21} \cdot \omega_y + c_{22} \cdot (-\omega_x) + c_{23} \cdot 0 \\ c_{31} \cdot 0 + c_{32} \cdot \omega_z + c_{33} \cdot (-\omega_y) & c_{31} \cdot (-\omega_z) + c_{32} \cdot 0 + c_{33} \cdot \omega_x & c_{31} \cdot \omega_y + c_{32} \cdot (-\omega_x) + c_{33} \cdot 0 \end{pmatrix} C˙bi= c110+c12ωz+c13(ωy)c210+c22ωz+c23(ωy)c310+c32ωz+c33(ωy)c11(ωz)+c120+c13ωxc21(ωz)+c220+c23ωxc31(ωz)+c320+c33ωxc11ωy+c12(ωx)+c130c21ωy+c22(ωx)+c230c31ωy+c32(ωx)+c330


6. 物理意义

  • 叉乘矩阵 ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb× 描述了载体坐标系相对于惯性坐标系的旋转速率。
  • 姿态矩阵微分方程 C ˙ b i = C b i ( ω i b b × ) \dot{\boldsymbol{C}}_b^i = \boldsymbol{C}_b^i (\boldsymbol{\omega}_{ib}^b \times) C˙bi=Cbi(ωibb×)描述了姿态矩阵随时间的变化率。

总结

在惯性导航解算中,叉乘矩阵 ω i b b × \boldsymbol{\omega}_{ib}^b \times ωibb×是将角速度向量 ω i b b \boldsymbol{\omega}_{ib}^b ωibb 的叉乘运算转化为矩阵乘法运算的工具。通过姿态矩阵微分方程,可以实时更新姿态矩阵 C b i \boldsymbol{C}_b^i Cbi,从而解算载体的姿态变化。


http://www.ppmy.cn/embedded/167486.html

相关文章

笔记20250226

电源树Power Tree(电源树)分析:从零开始掌握电源管理的秘诀-公司宣传网站1.6 电源树中电流的计算方法(硬件基础系列)-CSDN博客Xilinx的FPGA硬件设计一——电源篇_xilinx内核电流-CSDN博客

数据结构秘籍(一)线性数据结构

1.数组 数组(Array)是一种很常见的数据结构。它由相同类型的元素(element)组成,并且是使用一块连续的内存来存储。 我们直接可以利用元素的索引(index)计算出该元素对应的存储地址。 数组的特…

学Java第三十一天----------多态调用成员的特点

一、多态调用成员的特点 成员变量调用:编译看左边,运行也看左边,即获取的是父类的成员变量值 成员方法调用:编译看左边,运行看右边,即运行的是子类的成员方法 二、多态的优势 示例1:上一节的代…

DeepSeek 提示词:定义、作用、分类与设计原则

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…

【EB-06】SystemCreator dbc转arxml

SystemCreator dbc转arxml 1. SystemCreator 意义2. SystemCreator使用方法2.1 实现步骤2.2 参考官方文档方法1. SystemCreator 意义 EB Tresos 对dbc直接导入的支持不是很完善,dbc也不是AUTOSAR标准的数据库文件,EB建议所有通信矩阵通过ARXML交互比较合理(AUTOSAR定义的)…

初始化一个Vue项目

1、安装vue npm i -g vue2、安装vue-cli npm install -g vue-cli3、安装webpack npm install -g webpack 4、安装完上述组件后,检查是否安装成功 node -v npm -v vue --version4、初始化自己的vue项目 vue init webpack bpmn-vue执行命令:npm insta…

JAVA-如何理解Mysql的索引

一、索引的概念 索引是一种特殊的文件,包含着对数据表里所有记录的引用(指针/地址)。可以对表中的一列或多列创建索引, 并指定索引的类型,各类索引有各自的数据结构实现。 二、索引是什么,用来干嘛 数据库中的表、数据、索引之间的…

Opencv [去除水印]

一、原图 二、代码 #include <iostream> #include<opencv2/opencv.hpp> using namespace std; using namespace cv;/*** brief 程序的入口函数* * 此函数是程序执行的起点&#xff0c;打印一条问候语到标准输出&#xff0c;并返回一个退出状态码。* * return int …