区块链中的递归长度前缀(RLP)序列化详解

embedded/2025/2/22 11:25:02/

文章目录

      • 1. 什么是RLP序列化?
      • 2. RLP的设计目标与优势
      • 3. RLP处理的数据类型
      • 4. RLP编码规则详解
        • 字符串的编码规则
        • 列表的编码规则
      • 5. RLP解码原理
      • 6. RLP在以太坊中的应用场景
      • 7. 编码示例分析
      • 8. 总结


在这里插入图片描述


1. 什么是RLP序列化?

递归长度前缀(RLP) 是一种专为区块链设计的序列化方法,主要用于将复杂数据结构(如嵌套列表、字符串)转换为二进制格式。其核心思想是通过添加长度前缀明确数据边界,确保数据在网络传输或存储时能被准确还原。例如,字符串 “dog” 被编码为 [0x83, 'd', 'o', 'g'],其中 0x83 表示后续有3个字节的数据。其核心作用是将复杂的嵌套数据结构(如交易、区块等)转换为紧凑的二进制格式,以便网络传输和持久化存储。

2. RLP的设计目标与优势

  • 高效压缩:相比JSON等文本格式,RLP通过消除冗余字段名显著减少数据体积。例如,JSON需要标注键名(如"name": "Alice"),而RLP仅存储数据本身。
  • 自描述性:解码时通过第一个字节即可推断数据类型(字符串/列表)和长度范围,无需依赖外部元数据。
  • 递归兼容性:支持嵌套列表结构,适用于区块链中常见的树状数据(如默克尔树)。

3. RLP处理的数据类型

RLP直接处理两类数据:

  1. 字符串(Bytes):任意二进制数据,例如整数需转换为大端字节序(高位在前)的二进制形式。
  2. 列表(List):可嵌套其他字符串或列表的序列,如["cat", [["puppy"], "cow"], "horse"]

其他类型(如结构体)需先转换为这两类数据。例如,以太坊中的交易结构体会被扁平化为列表。


4. RLP编码规则详解

字符串的编码规则
字符串长度(字节)编码结构前缀计算
单字节(0x00-0x7f)直接存储原值无前缀
1-55字节[前缀][数据]前缀 = 0x80 + 长度
>55字节[前缀][长度][数据]前缀 = 0xb7 + 长度所占字节数

示例

  • 字符串"dog"(3字节):编码为[0x83, 'd', 'o', 'g'](前缀0x83 = 0x80 + 3)。
  • 空字符串:编码为0x80(前缀0x80 + 长度0)。
列表的编码规则
列表总编码长度编码结构前缀计算
0-55字节[前缀][元素编码]前缀 = 0xc0 + 总长度
>55字节[前缀][总长度][元素编码]前缀 = 0xf7 + 总长度所占字节数

示例

  • 列表["abc", "def"]:每个字符串编码为0x83abc0x83def,总长度6字节,列表前缀为0xc6(0xc0 + 6),最终编码为[0xc6, 0x83, 'a','b','c', 0x83, 'd','e','f']

5. RLP解码原理

解码时通过首字节快速判断数据类型:

  • 首字节 ≤ 0x7f:直接解析为单字节数据。
  • 0x80 ≤ 首字节 ≤ 0xb7:解析为短字符串,长度 = 首字节 - 0x80。
  • 0xb8 ≤ 首字节 ≤ 0xbf:解析为长字符串,后续字节存储实际长度。
  • 0xc0 ≤ 首字节 ≤ 0xf7:解析为短列表,长度 = 首字节 - 0xc0。
  • 0xf8 ≤ 首字节 ≤ 0xff:解析为长列表,后续字节存储总长度。

6. RLP在以太坊中的应用场景

  1. 交易序列化:交易的字段(nonce、gasLimit、to地址等)按固定顺序组成列表后编码。
  2. 区块存储:区块头中的父哈希、交易根等字段通过RLP压缩后存入数据库。
  3. 网络通信:节点间传输数据时减少带宽占用。

7. 编码示例分析

案例1:整数1024的编码

  • 转换为大端字节:0x0400(2字节)。
  • 前缀计算:0x80 + 2 = 0x82。
  • 编码结果:[0x82, 0x04, 0x00]

案例2:嵌套列表["cat", ["puppy"]]

  1. 编码"cat"[0x83, 'c','a','t'](长度3)。
  2. 编码["puppy"] → 前缀0xc0 + 5(总长度)= 0xc5 → [0xc5, 0x85, 'p','u','p','p','y']
  3. 合并列表总长度:3("cat"编码长度) + 6(子列表编码长度) = 9 → 前缀0xc0 + 9 = 0xc9。
  4. 最终编码:[0xc9, 0x83, 'c','a','t', 0xc5, 0x85, 'p','u','p','p','y']

8. 总结

RLP通过递归结构和长度前缀的设计,在保证数据完整性的同时实现了高效压缩。其自描述特性使解码过程无需外部协议,成为以太坊生态中数据存储与传输的基石。理解RLP有助于深入分析区块链底层数据的组织方式,并为开发自定义序列化方案提供参考。


http://www.ppmy.cn/embedded/164309.html

相关文章

番茄工作法html实现

对比了deepseek-r1-online和本地部署的14b的版本,输出的输出的html页面。 在线满血版的功能比较强大,可以一次完成所有要求。14b版本的功能有一些欠缺,但是基本功能也是写了出来了。 input write a html named Pomodoro-clock which “hel…

【以无克有】排序之堆结构及堆排序

未察凌云木本根,修枝剪叶自沉浮,终成玉宇最高层。 堆结构堆排序堆排序步骤堆排序原理堆排序代码实现堆化(下滤)部分堆排序部分 复杂度简要分析例题参考资料及推荐学习总结 堆结构 堆的本质 完全二叉树:所有层除最后一层外都是满的&#xff0…

Windows 下 Ollama 安装deepseek本地模型

Windows 下 Ollama 安装deepseek本地模型 安装 Ollama 下载 Ollama 下载链接:https://ollama.org.cn/download/windows 下载完成后,按照提示进行安装。 安装过程 安装完成后,安装页面会自动关闭,这是正常现象。 接下来&#…

OpenCV中的边缘检测

边缘检测是图像处理和计算机视觉中的关键技术之一,旨在识别图像中像素强度发生显著变化的区域,这些区域通常对应于物体的边界或轮廓。边缘检测在机器视觉中具有重要的需求背景,主要体现在以下几个方面: 图像分割:边缘…

TypeScript - 属性修饰符

属性修饰符 属性的简写形式 protected 修饰符 private 修饰符 readonly 修饰符

服务搭建 ollama + Deepseek + Open WebUI + 硅基流动API

文章目录 一、ollamaollama 安装ollama 配置 二、 Deepseek 模型下载三、 Open WebUI1、安装 Docker2、安装 WebUI 镜像3、确认镜像安装成功4、客户端访问5、平台使用5、外部服务器6、外部接入硅基流动API I know, i know 地球另一端有你陪我 一、ollama 功能类似 dock…

什么是接口自动化测试?接口自动化测试的目的是什么?

1、什么是接口测试 接口测试是对系统或组件之间的接口的测试。主要用于检测外部系统与系统间以及内部各个子系统间的交互点。测试重点是检查数据交换、传递和控制管理过程,以及系统间的相互逻辑依赖关系等。 2、接口测试的目的 1> 尽早介入软件测试流程&#…

智能硬件-01智能停车场

行业背景 随着现代人们生活水平的提高,私家车辆在不断增加,小区将面临着临时车用户要多于固定车用户的窘境,尤其是在早晚高峰时段车辆出入拥堵,对小区的车辆管理难度越来越大,对停车场收费员的岗位要求越来越高&#…