3.【线性代数】——矩阵乘法和逆矩阵

embedded/2025/2/15 21:02:29/

矩阵乘法逆矩阵

1. 矩阵乘法

1.1 常规方法

[ . . . . . . . . . . . . a 31 a 32 a 33 a 34 . . . . . . . . . . . . ] ⏟ A m ∗ n [ . . . . . . . . . b 14 . . . . . . . . . b 24 . . . . . . . . . b 34 . . . . . . . . . b 44 ] ⏟ B n ∗ p = [ . . . . . . . . . . . . . . . . . . . . . C 34 . . . . . . . . . . . . ] ⏟ C m ∗ p \underbrace{\begin{bmatrix} ...&...&...&...\\ a_{31}&a_{32}&a_{33}&a_{34}\\ ...&...&...&...\\ \end{bmatrix}}_{A_{m*n}} \underbrace{\begin{bmatrix} ...&...&...&b_{14}\\ ...&...&...&b_{24}\\ ...&...&...&b_{34}\\ ...&...&...&b_{44} \end{bmatrix}}_{B_{n*p}}= \underbrace{\begin{bmatrix} ...&...&...&...\\ ...&...&...&C_{34}\\ ...&...&...&... \end{bmatrix}}_{C_{m*p}} Amn ...a31......a32......a33......a34... Bnp ....................................b14b24b34b44 =Cmp ..............................C34...
C 34 = A r o w 3 ∗ B c o l 4 = ∑ i = 1 n a 3 i ∗ b i 4 C_{34} = A_{row_3}*B_{col_4} = \sum\limits_{i=1}^{n}a_{3i}*b_{i4} C34=Arow3Bcol4=i=1na3ibi4

1.2 列向量组合

已知
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] [ B 11 B 21 B 31 ] = B 11 ∗ A c o l 1 + B 21 ∗ A c o l 2 + B 31 ∗ A c o l 3 = [ B 11 ∗ A 11 + B 21 ∗ A 12 + B 31 ∗ A 13 B 11 ∗ A 21 + B 21 ∗ A 22 + B 31 ∗ A 23 B 11 ∗ A 31 + B 21 ∗ A 32 + B 31 ∗ A 33 ] \begin{aligned} \begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix} \begin{bmatrix} B_{11}\\ B_{21}\\ B_{31} \end{bmatrix} &=B_{11}*A_{col1}+B_{21}*A_{col2}+B_{31}*A_{col3} \newline &= \begin{bmatrix} B_{11}*A_{11}+B_{21}*A_{12}+B_{31}*A_{13}\\ B_{11}*A_{21}+B_{21}*A_{22}+B_{31}*A_{23}\\ B_{11}*A_{31}+B_{21}*A_{32}+B_{31}*A_{33} \end{bmatrix}\end{aligned} A11A21A31A12A22A32A13A23A33 B11B21B31 =B11Acol1+B21Acol2+B31Acol3= B11A11+B21A12+B31A13B11A21+B21A22+B31A23B11A31+B21A32+B31A33
那么
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] ⏟ A [ B 11 B 12 B 21 B 22 B 31 B 32 ] ⏟ B = [ B 11 ∗ A c o l 1 + B 21 ∗ A c o l 2 + B 31 ∗ A c o l 3 B 12 ∗ A c o l 1 + B 22 ∗ A c o l 2 + B 32 ∗ A c o l 3 ] ⏟ C = [ B 11 ∗ A 11 + B 21 ∗ A 12 + B 31 ∗ A 13 B 12 ∗ A 11 + B 22 ∗ A 12 + B 32 ∗ A 13 B 11 ∗ A 21 + B 21 ∗ A 22 + B 31 ∗ A 23 B 12 ∗ A 21 + B 22 ∗ A 22 + B 32 ∗ A 23 B 11 ∗ A 31 + B 21 ∗ A 32 + B 31 ∗ A 33 B 12 ∗ A 31 + B 22 ∗ A 32 + B 32 ∗ A 33 ] \begin{aligned} \underbrace{\begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix}}_{B} &=\underbrace{\begin{bmatrix}B_{11}*A_{col1}+B_{21}*A_{col2}+B_{31}*A_{col3} & B_{12}*A_{col1}+B_{22}*A_{col2}+B_{32}*A_{col3}\end{bmatrix}}_{C} \newline &=\begin{bmatrix} B_{11}*A_{11}+B_{21}*A_{12}+B_{31}*A_{13}& B_{12}*A_{11}+B_{22}*A_{12}+B_{32}*A_{13}\\ B_{11}*A_{21}+B_{21}*A_{22}+B_{31}*A_{23} & B_{12}*A_{21}+B_{22}*A_{22}+B_{32}*A_{23}\\ B_{11}*A_{31}+B_{21}*A_{32}+B_{31}*A_{33} & B_{12}*A_{31}+B_{22}*A_{32}+B_{32}*A_{33} \end{bmatrix}\end{aligned} A A11A21A31A12A22A32A13A23A33 B B11B21B31B12B22B32 =C [B11Acol1+B21Acol2+B31Acol3B12Acol1+B22Acol2+B32Acol3]= B11A11+B21A12+B31A13B11A21+B21A22+B31A23B11A31+B21A32+B31A33B12A11+B22A12+B32A13B12A21+B22A22+B32A23B12A31+B22A32+B32A33
C矩阵是A矩阵的列向量组合

1.3 行向量组合

已知
[ A 11 A 12 A 13 ] [ B 11 B 12 B 21 B 22 B 31 B 32 ] = A 11 ∗ B r o w 1 + A 12 ∗ B r o w 2 + A 13 ∗ B r o w 3 = [ A 11 ∗ B 11 A 11 ∗ B 12 + + A 12 ∗ B 21 A 12 ∗ B 22 + + A 13 ∗ B 31 A 13 ∗ B 32 ] \begin{aligned} \begin{bmatrix} A_{11}&A_{12}&A_{13} \end{bmatrix} \begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix} &=A_{11}*B_{row1}+A_{12}*B_{row2}+A_{13}*B_{row3} \newline &= \begin{bmatrix} A_{11}*B_{11}&A_{11}*B_{12}\\ +&+\\ A_{12}*B_{21}&A_{12}*B_{22}\\ +&+\\ A_{13}*B_{31}&A_{13}*B_{32} \end{bmatrix}\end{aligned} [A11A12A13] B11B21B31B12B22B32 =A11Brow1+A12Brow2+A13Brow3= A11B11+A12B21+A13B31A11B12+A12B22+A13B32
那么
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] ⏟ A [ B 11 B 12 B 21 B 22 B 31 B 32 ] ⏟ B = [ A 11 ∗ B r o w 1 + A 12 ∗ B r o w 2 + A 13 ∗ B r o w 3 A 21 ∗ B r o w 1 + A 22 ∗ B r o w 2 + A 23 ∗ B r o w 3 A 31 ∗ B r o w 1 + A 32 ∗ B r o w 2 + A 33 ∗ B r o w 3 ] ⏟ C \begin{aligned} \underbrace{\begin{bmatrix} A_{11}&A_{12}&A_{13}\\ A_{21}&A_{22}&A_{23}\\ A_{31}&A_{32}&A_{33} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} B_{11}&B_{12}\\ B_{21}&B_{22}\\ B_{31}&B_{32} \end{bmatrix}}_{B} &=\underbrace{\begin{bmatrix} A_{11}*B_{row1}+A_{12}*B_{row2}+A_{13}*B_{row3}\\ A_{21}*B_{row1}+A_{22}*B_{row2}+A_{23}*B_{row3}\\ A_{31}*B_{row1}+A_{32}*B_{row2}+A_{33}*B_{row3} \end{bmatrix}}_{C} \newline \end{aligned} A A11A21A31A12A22A32A13A23A33 B B11B21B31B12B22B32 =C A11Brow1+A12Brow2+A13Brow3A21Brow1+A22Brow2+A23Brow3A31Brow1+A32Brow2+A33Brow3
C矩阵是B矩阵的行向量组合

1.4 单行和单列的乘积和

[ 2 7 3 8 4 9 ] [ 1 6 1 1 ] = [ 2 3 4 ] [ 1 6 ] + [ 7 8 9 ] [ 1 1 ] = [ 9 19 11 26 13 33 ] \begin{aligned} \begin{bmatrix} 2&7\\ 3&8\\ 4&9 \end{bmatrix} \begin{bmatrix} 1&6\\ 1&1\\ \end{bmatrix} &= \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix} \begin{bmatrix} 1&6\\ \end{bmatrix} + \begin{bmatrix} 7\\ 8\\ 9 \end{bmatrix} \begin{bmatrix} 1&1\\ \end{bmatrix} \newline &= \begin{bmatrix} 9&19\\ 11&26\\ 13&33 \end{bmatrix} \end{aligned} 234789 [1161]= 234 [16]+ 789 [11]= 91113192633

1.5 块乘法

[ A 1 ∣ A 2 —— —— —— A 3 ∣ A 4 ] [ B 1 ∣ B 2 —— —— —— B 3 ∣ B 4 ] = [ A 1 ∗ B 1 + A 2 ∗ B 3 ∣ A 1 ∗ B 2 + A 2 ∗ B 4 ———————— —— ———————— A 3 ∗ B 1 + A 4 ∗ B 3 ∣ A 3 ∗ B 2 + A 4 ∗ B 4 ] \begin{bmatrix} A_{1}&|&A_{2}\\ ——&——&——\\ A_{3}&|&A_{4} \end{bmatrix} \begin{bmatrix} B_{1}&|&B_{2}\\ ——&——&——\\ B_{3}&|&B_{4} \end{bmatrix} =\begin{bmatrix} A_{1}*B_{1}+A_2*B_{3}&|&A_{1}*B_{2}+A_2*B_{4}\\ ————————&——&————————\\ A_{3}*B_{1}+A_4*B_{3}&|&A_{3}*B_{2}+A_4*B_{4} \end{bmatrix} A1——A3——A2——A4 B1——B3——B2——B4 = A1B1+A2B3————————A3B1+A4B3——A1B2+A2B4————————A3B2+A4B4

2. 逆矩阵

2.1 逆矩阵的定义

存在
A − 1 A = I A^{-1}A = I A1A=I
那么,称 A − 1 A^{-1} A1为A的逆矩阵,A是可逆的,记为非奇异矩阵

当A为方阵(行数=列数)时,左逆矩阵=右逆矩阵
A − 1 A = I = A A − 1 A^{-1}A = I=AA^{-1} A1A=I=AA1

2.2 奇异矩阵

存在 A x = 0 ( x 非零向量 ) ⇒ A 不可逆 Ax=0(x非零向量)\Rightarrow A不可逆 Ax=0(x非零向量)A不可逆
证明如下
A x = 0 ⇒ A − 1 A = I A − 1 A x = 0 ⇒ x = 0 (与 x 为非零向量冲突) \begin{aligned} &Ax = 0 \newline&\xRightarrow{A^{-1}A=I} A^{-1}Ax=0\newline &\xRightarrow{} x=0 (与x为非零向量冲突) \end{aligned} Ax=0A1A=I A1Ax=0 x=0(与x为非零向量冲突)

延伸(学习了后面的列向量等):

  • A x Ax Ax是A的列向量的线性组合, A x = 0 有解 Ax=0有解 Ax=0有解说明,存在A的列向量的组合为0,A不是满秩矩阵。
  • 那么奇异矩阵不是满秩矩阵
    那能不能说明由此推导出满秩矩阵可逆?
    好像不是很充分,除非能推导出 A x = 0 ( x 非零向量 ) 无解 ⇒ A 可逆 Ax=0(x非零向量)无解\Rightarrow A可逆 Ax=0(x非零向量)无解A可逆
2.3 Gauss-Jordan 求逆矩阵
2.3.1 求逆矩阵 ⟺ \Longleftrightarrow 解方程组

[ 1 3 2 7 ] ⏟ A [ a c b d ] ⏟ A − 1 = [ 1 0 0 1 ] ⏟ I ⟺ { a + 3 b = 1 2 c + 7 d = 1 \underbrace{\begin{bmatrix} 1&3\\ 2&7 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a&c\\ b&d \end{bmatrix}}_{A^{-1}} =\underbrace{\begin{bmatrix} 1&0\\ 0&1 \end{bmatrix}}_{I} \Longleftrightarrow \begin{cases} a+3b=1 \\ 2c+7d=1\\ \end{cases} A [1237]A1 [abcd]=I [1001]{a+3b=12c+7d=1

2.3.2 Gauss-Jordan求逆矩阵

A A − 1 = I AA^{-1}=I AA1=I 可写为:
{ [ 1 3 2 7 ] [ a b ] = [ 1 0 ] [ 1 3 2 7 ] [ c d ] = [ 0 1 ] \begin{cases} \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix} \\\\ \begin{bmatrix} 1&3\\ 2&7 \end{bmatrix} \begin{bmatrix} c\\d \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix} \end{cases} [1237][ab]=[10][1237][cd]=[01]

[ 1 3 1 0 2 7 0 1 ] ⏟ 增广矩阵[A|I] ⇒ r o w 2 − 2 r o w 1 [ 1 3 1 0 0 1 − 2 1 ] ⇒ r o w 1 − 3 r o w 2 [ 1 0 7 − 3 0 1 − 2 1 ] ⏟ [ I ∣ E ] \begin{aligned} \underbrace{\begin{bmatrix} 1&3&1&0\\ 2&7&0&1 \end{bmatrix}}_{\text{增广矩阵[A|I]}} &\xRightarrow{row_{2}-2row_{1}} \begin{bmatrix} 1&3&1&0\\ 0&1&-2&1 \end{bmatrix} \newline&\xRightarrow{row_{1}-3row_{2}} \underbrace{\begin{bmatrix} 1&0&7&-3\\ 0&1&-2&1 \end{bmatrix}}_{[I|E]} \end{aligned} 增广矩阵[A|I] [12371001]row22row1 [10311201]row13row2 [IE] [10017231]
第一种,老师上课讲的,公式推导
E [ A I ] = [ I E ] ⇒ E A = I ⇒ E = A − 1 E\begin{bmatrix} A&I \end{bmatrix} =\begin{bmatrix} I&E \end{bmatrix} \Rightarrow EA=I \Rightarrow E = A^{-1} E[AI]=[IE]EA=IE=A1
ps:

  • 从矩阵A经过消元变成了单位矩阵, 那么A满秩,不然变不成单位矩阵。
  • 所以说,如果A可逆,那么A一定是满秩矩阵。
  • 如果A满秩,那么A一定可逆。

第二种,回代到方程组中,也能求出解
{ [ 1 0 0 1 ] [ a b ] = [ 7 − 2 ] [ 1 0 0 1 ] [ c d ] = [ − 3 1 ] ⇒ { a = 7 b = − 2 c = − 3 d = 1 \begin{cases} \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} \begin{bmatrix} a\\b \end{bmatrix} = \begin{bmatrix} 7\\-2 \end{bmatrix} \\\\ \begin{bmatrix} 1&0\\ 0&1 \end{bmatrix} \begin{bmatrix} c\\d \end{bmatrix} = \begin{bmatrix} -3\\1 \end{bmatrix} \end{cases} \Rightarrow \begin{cases} a = 7\\ b=-2\\ c=-3\\ d=1 \end{cases} [1001][ab]=[72][1001][cd]=[31] a=7b=2c=3d=1


http://www.ppmy.cn/embedded/162501.html

相关文章

C++自研游戏引擎-碰撞检测组件-八叉树AABB检测算法实现

八叉树碰撞检测是一种在三维空间中高效处理物体碰撞检测的算法,其原理可以类比为一个管理三维空间物体的智能系统。这个示例包含两个部分:八叉树部分用于宏观检测,AABB用于微观检测。AABB可以更换为均值或节点检测来提高检测精度。 八叉树的…

2024 StoryDiffusion 文字/文字+图像----->视频

基于扩散模型的生成模型在生成长序列图像和视频时面临内容一致性的重大挑战,尤其是涉及复杂主题和细节的场景中,角色身份、服饰风格等元素难以保持连贯。传统方法通常依赖潜在空间的运动预测,但长视频生成时易出现不稳定性。针对这些问题&…

初学 mybatis

前言 回顾之前 不使用 mybatis 框架,我们是怎么通过Java 操作数据库的 "jdbc" 前提:使用maven 构建的项目 1 添加 关于jdbc 的依赖,以及辅助操作数据库的 commons-dubli jar包 截取 前后端项目 2 添加配置文件里面内容有&…

上下文编辑器在不同场景下的功能(含使用案例)

上下文编辑器(Context Editor)解释 上下文编辑器(Context Editor)通常指的是一种能够修改、优化或过滤上下文信息的工具或方法,以增强下游任务的表现,特别是在 检索增强生成(RAG)、问…

Webpack代码分割、分割策略性能优化详解

在前端面试中,Webpack 是一个常见的考察点,特别是关于性能优化、构建配置以及代码分割等方面的问题。以下是 Webpack 常见问题详解,包括 代码分割 相关的内容。 1. Webpack 基础概念 1.1 Webpack 是什么? Webpack 是一个前端构建工具,主要用于将项目中的各种资源(JavaS…

《Nuxt.js 实战:从放弃到入门》一、项目初始,图片尺寸缩放

环境准备 在开始之前,确保你的开发环境已经安装了以下工具: Node.js:建议安装最新的 LTS 版本,可以从 Node.js 官网 下载安装。npm 或 yarn:npm 会随着 Node.js 一起安装,yarn 可以通过 npm install -g y…

【Prometheus】prometheus黑盒监控balckbox全面解析与应用实战

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…

python视频爬虫

文章目录 爬虫的基本步骤一些工具模拟浏览器并监听文件视频爬取易错点一个代码示例参考 爬虫的基本步骤 1.抓包分析,利用浏览器的开发者工具 2.发送请求 3.获取数据 4.解析数据 5.保存数据 一些工具 requests, 用于发送请求,可以通过get,p…