【深度学习】多目标融合算法(四):多门混合专家网络MMOE(Multi-gate Mixture-of-Experts)

embedded/2025/2/11 15:58:05/

目录

一、引言

二、MMoE(Multi-gate Mixture-of-Experts,多门混合专家网络

2.1 技术原理

2.2 技术优缺点

2.3 业务代码实践

2.3.1 业务场景与建模

2.3.2 模型代码实现

2.3.3 模型训练与推理测试

2.3.4 打印模型结构 

三、总结


一、引言

上一篇我们讲了MoE混合专家网络,通过引入Gate门控,针对不同的Input分布,对多个专家网络赋予不同的权重,解决多场景或多目标任务task的底层信息共享及个性化问题。但MoE网络对于不同的Expert专家网络,采用同一个Gate门控网络,仅对不同的Input分布实现了个性化,对不同目标任务task的个性化刻画能力不足,今天在MoE的基础上,引入MMoE网络,为每一个task任务构建专属的Gate门控网络,这样的改进可以针对不同的task得到不同的Experts权重,从而实现对Experts专家的选择利用,不同的任务task对应的gate门控网络可以学习到不同的Experts网络组合模式,更容易捕捉到不容task间的相关性和差异性。

二、MMoE(Multi-gate Mixture-of-Experts,多门混合专家网络

2.1 技术原理

MMoE(Multi-gate Mixture-of-Experts)全称为多门混合专家网络,主要由多个专家网络、多个任务塔、多个门控网络构成。核心原理:样本数据分别输入num_experts个专家网络进行推理,每个专家网络实际上是一个前馈神经网络(MLP),输入维度为x,输出维度为output_experts_dim;同时,样本数据分别输入目标task对应的门控网络Gate A及Gate B,门控网络也是一个MLP(可以为多层,也可以为一层),输出为num_experts个experts专家的概率分布,维度为num_experts(采用softmax将输出归一化,各个维度加起来和为1);对于每一个Task,将各自对应专家网络的输出,基于对应gate门控网络的softmax加权平均,作为各自Task的输入,所有Task的输入统一维度均为output_experts_dim。在每次反向传播迭代时,对Gate A、Gate B和num_experts个专家参数进行更新,Gate A、Gate B和专家网络的参数受任务Task A、B共同影响。

  • 专家网络样本数据分别输入num_experts个专家网络进行推理,每个专家网络实际上是一个前馈神经网络(MLP),输入维度为x,输出维度为output_experts_dim。
  • 门控网络样本数据分别输入目标task对应的门控网络Gate A及Gate B,门控网络也是一个MLP(可以为多层,也可以为一层),输出为num_experts个experts专家的概率分布,维度为num_experts(采用softmax将输出归一化,各个维度加起来和为1)
  • 任务网络:对于每一个Task,将各自对应专家网络的输出,基于对应gate门控网络的softmax加权平均,作为各自Task的输入,所有Task的输入统一维度均为output_experts_dim。

2.2 技术优缺点

相较于MoE网络,MMoE的本质是每个task自带Gate门控网络对多个专家的预估结果进行选择,相当于给每个task安排了一个个人助理,对专家的结果进行评审(而MoE对于所有task仅有一个公共助理,对task的专属需求了解不深)。相较于MoE网络

优点:

  • 对每个task安排专属的gate网络,在专家网络赋值时更加个性化
  • 更容易捕捉到不容task间的相关性和差异性。

缺点: 

  • MMOE中所有的Expert是被所有task共享的,这可能无法捕捉到任务之间更复杂的关系,从而给部分任务带来一定的噪声
  • 不同的Expert之间没有交互,联合优化的效果有所折扣,虽然可以缓解负迁移问题,但跷跷板现象仍然存在。

2.3 业务代码实践

2.3.1 业务场景与建模

我们还是以小红书推荐场景为例,针对一个视频,用户可以点红心(互动),也可以点击视频进行播放(点击),针对互动和点击两个目标进行多目标建模

我们构建一个100维特征输入,4个experts专家网络,2个task目标,2个门控的MMoE网络,用于建模多目标学习问题,模型架构图如下:

​​​​​​​​​​​​​​​​​​​​​

如架构图所示,其中有几个注意的点:

  • num_experts:门控gate的输出维度和专家数相同,均为num_experts,因为gate的用途是对专家网络最后一层进行加权平均,gate维度与专家数是直接对应关系。
  • output_experts_dim:专家网络的输出维度和task网络的输入维度相同,task网络承接的是专家网络各维度的加权平均值,experts网络与task网络是直接对应关系。
  • Softmax:Gate门控网络对最后一层采用Softmax归一化,保证专家网络加权平均后值域相同

2.3.2 模型代码实现

基于pytorch,实现上述网络架构,如下:

python">import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDatasetclass MMoEModel(nn.Module):def __init__(self, input_dim, experts_hidden1_dim, experts_hidden2_dim, output_experts_dim, task_hidden1_dim, task_hidden2_dim, output_task1_dim, output_task2_dim, gate_hidden1_dim, gate_hidden2_dim, num_experts):super(MMoEModel, self).__init__()# 初始化函数外使用初始化变量需要赋值,否则默认使用全局变量# 初始化函数内使用初始化变量不需要赋值 self.num_experts = num_expertsself.output_experts_dim = output_experts_dim# 初始化多个专家网络self.experts = nn.ModuleList([nn.Sequential(nn.Linear(input_dim, experts_hidden1_dim),nn.ReLU(),nn.Linear(experts_hidden1_dim, experts_hidden2_dim),nn.ReLU(),nn.Linear(experts_hidden2_dim, output_experts_dim),nn.ReLU()) for _ in range(num_experts)])# 定义任务1的输出层self.task1_head = nn.Sequential(nn.Linear(output_experts_dim, task_hidden1_dim),nn.ReLU(),nn.Linear(task_hidden1_dim, task_hidden2_dim),nn.ReLU(),nn.Linear(task_hidden2_dim, output_task1_dim),nn.Sigmoid()) # 定义任务2的输出层self.task2_head = nn.Sequential(nn.Linear(output_experts_dim, task_hidden1_dim),nn.ReLU(),nn.Linear(task_hidden1_dim, task_hidden2_dim),nn.ReLU(),nn.Linear(task_hidden2_dim, output_task2_dim),nn.Sigmoid()) # 初始化门控网络1self.gating1_network = nn.Sequential(nn.Linear(input_dim, gate_hidden1_dim),nn.ReLU(),nn.Linear(gate_hidden1_dim, gate_hidden2_dim),nn.ReLU(),nn.Linear(gate_hidden2_dim, num_experts),nn.Softmax(dim=1))# 初始化门控网络2self.gating2_network = nn.Sequential(nn.Linear(input_dim, gate_hidden1_dim),nn.ReLU(),nn.Linear(gate_hidden1_dim, gate_hidden2_dim),nn.ReLU(),nn.Linear(gate_hidden2_dim, num_experts),nn.Softmax(dim=1))def forward(self, x):# 计算输入数据通过门控网络后的权重gates1 = self.gating1_network(x)gates2 = self.gating2_network(x)#print(gates)batch_size, _ = x.shapetask1_inputs = torch.zeros(batch_size, self.output_experts_dim)task2_inputs = torch.zeros(batch_size, self.output_experts_dim)# 计算每个专家的输出并加权求和for i in range(self.num_experts):expert_output = self.experts[i](x)task1_inputs += expert_output * gates1[:, i].unsqueeze(1)task2_inputs += expert_output * gates2[:, i].unsqueeze(1)task1_outputs = self.task1_head(task1_inputs)task2_outputs = self.task2_head(task2_inputs)return task1_outputs, task2_outputs# 实例化模型对象
num_experts = 4  # 假设有4个专家
experts_hidden1_dim = 64
experts_hidden2_dim = 32
output_experts_dim = 16
gate_hidden1_dim = 16
gate_hidden2_dim = 8
task_hidden1_dim = 32
task_hidden2_dim = 16
output_task1_dim = 1
output_task2_dim = 1# 构造虚拟样本数据
torch.manual_seed(42)  # 设置随机种子以保证结果可重复
input_dim = 100
num_samples = 1024
X_train = torch.randint(0, 2, (num_samples, input_dim)).float()
y_train_task1 = torch.rand(num_samples, output_task1_dim)  # 假设任务1的输出维度为1
y_train_task2 = torch.rand(num_samples, output_task2_dim)  # 假设任务2的输出维度为1# 创建数据加载器
train_dataset = TensorDataset(X_train, y_train_task1, y_train_task2)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)model = MMoEModel(input_dim, experts_hidden1_dim, experts_hidden2_dim, output_experts_dim, task_hidden1_dim, task_hidden2_dim, output_task1_dim, output_task2_dim, gate_hidden1_dim, gate_hidden2_dim, num_experts)# 定义损失函数和优化器
criterion_task1 = nn.MSELoss()
criterion_task2 = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练循环
num_epochs = 100
for epoch in range(num_epochs):model.train()running_loss = 0.0for batch_idx, (X_batch, y_task1_batch, y_task2_batch) in enumerate(train_loader):# 前向传播: 获取预测值#print(batch_idx, X_batch )#print(f'Epoch [{epoch+1}/{num_epochs}-{batch_idx}], Loss: {running_loss/len(train_loader):.4f}')outputs_task1, outputs_task2 = model(X_batch)# 计算每个任务的损失loss_task1 = criterion_task1(outputs_task1, y_task1_batch)loss_task2 = criterion_task2(outputs_task2, y_task2_batch)total_loss = loss_task1 + loss_task2# 反向传播和优化optimizer.zero_grad()total_loss.backward()optimizer.step()running_loss += total_loss.item()if epoch % 10 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')print(model)
#for param_tensor in model.state_dict():
#    print(param_tensor, "\t", model.state_dict()[param_tensor].size())
# 模型预测
model.eval()
with torch.no_grad():test_input = torch.randint(0, 2, (1, input_dim)).float()  # 构造一个测试样本pred_task1, pred_task2 = model(test_input)print(f'互动目标预测结果: {pred_task1}')print(f'点击目标预测结果: {pred_task2}')

相比于上一篇MoE中的代码,MMoE初始化了gating1_network和gating2_network两个门控网络,在forward前向传播网络结构定义中,两个gate分别以input为输入,通过多层MLP后得到task相对应的加权平均权重。

2.3.3 模型训练与推理测试

运行上述代码,模型启动训练,Loss逐渐收敛,测试结果如下:

2.3.4 打印模型结构 ​​​​​​​

三、总结

本文详细介绍了MMoE多任务模型的算法原理、算法优势,并以小红书业务场景为例,构建网络结构并使用pytorch代码实现对应的网络结构、训练流程。相比于MoE,MMoE可以更好的学习不同Task任务的相关性和差异性。是深度学习推荐系统中多目标或多场景类问题中必须掌握的根基模型。

如果您还有时间,欢迎阅读本专栏的其他文章:

深度学习】多目标融合算法(一):样本Loss加权(Sample Loss Reweight)

深度学习】多目标融合算法(二):底部共享多任务模型(Shared-Bottom Multi-task Model) ​​​​​​​

深度学习】多目标融合算法(三):混合专家网络MOE(Mixture-of-Experts) 

 【深度学习】多目标融合算法(四):多门混合专家网络MMOE(Multi-gate Mixture-of-Experts)


http://www.ppmy.cn/embedded/161363.html

相关文章

Vite + Vue 3 项目中 `vite-plugin-vue-devtools` 的详细原理和使用方法

1. 概述 vite-plugin-vue-devtools 是一个 Vite 插件,用于在 Vue 3 项目中集成 Vue DevTools。Vue DevTools 是一个浏览器扩展,帮助开发者调试 Vue 应用。该插件简化了 DevTools 的集成过程,无需手动安装浏览器扩展。 2. 原理 插件机制&am…

探索 Java 多态的奥秘

一、引言 在面向对象编程中,多态是核心概念之一,它允许我们用一个接口或父类的引用操作多个不同子类对象,从而实现灵活的代码复用和扩展。本篇博客将借助一组具体的 Java 代码示例,深入剖析多态的实现机制,并探讨其在…

【jmeter】在windows中,创建的变量,在jmeter中,读取变量失败的问题,路径问题

1.0 在windows中,jmeter读取变量失败 在路径配置的时候,配置按照D:\FtpDownload\${file_name}运行之后,下载的文件,文件名出现问题 \取消了$符号的意义,所以需要更改路径 D:\\FtpDownload\\${file_name}

stm32小白成长为高手的学习步骤和方法

我们假定大家已经对STM32的书籍或者文档有一定的理解。如不理解,请立即阅读STM32的文档,以获取最基本的知识点。STM32单片机自学教程 这篇博文也是一篇不错的入门教程,初学者可以看看,讲的真心不错。 英文好的同学&#xf…

基于 gitee 的 CI/CD

基于 gitee 的 CI/CD 流程简介。 CI/CD 流程是指在软件开发过程中,通过自动化的方式实现代码的持续集成、持续部署和持续交付。 CI/CD 流程通常包括以下几个步骤: 代码提交:开发者将代码提交到代码仓库,如 Git、SVN 等。代码构建…

linux_kernel驱动开发_驱动调试

调试思路 对比开发板检查差异性。用试波器或万用表调试。配合硬件工程师共同解决问题。 开发思路 先在config中打开相应宏开关。设备树中加入相应配置即可。(可以扩展讲解宏开关有无生效) pcie 先lspci查看是否注册成功。然后才能看到其pcie设备 。…

Spring容器初始化扩展点:ApplicationContextInitializer

目录 一、什么是ApplicationContextInitializer?1、核心作用2、适用场景 二、ApplicationContextInitializer的使用方式1、实现ApplicationContextInitializer接口2、注册初始化器 三、ApplicationContextInitializer的执行时机四、实际应用案例1、动态设置环境变量…

springtask基本使用

Spring Task 介绍与基本使用 1. 什么是 Spring Task? Spring Task 是 Spring 框架提供的 轻量级任务调度模块,用于在应用程序中实现定时任务、周期性任务或延迟任务。它通过注解和配置简化了任务调度的开发,适用于单机环境下的简单调度需求。…