《机器学习数学基础》补充资料:矩阵基本子空间

embedded/2025/2/9 3:53:26/

秩-零化度定理是线性代数中第一个基本定理,本文介绍的“矩阵基本子空间”,是第二定理。

定理2:矩阵基本子空间

对于 m × n m\times n m×n矩阵 A \pmb{A} A (仅讨论实数矩阵),用线性变换表示 A : R n → R m \pmb{A}:\mathbb{R}^n\to\mathbb{R}^m A:RnRm,用如下符号表示不同空间:

  • 列空间(column space): C ( A ) = { A x ∣ x ∈ R n } C(\pmb{A})=\{\pmb{Ax}|\pmb{x}\in\mathbb{R}^n\} C(A)={AxxRn} ,即矩阵的值域(range)。将矩阵用列向量的方式表示 A = [ a 1 ⋯ a n ] \pmb{A}=\begin{bmatrix}\pmb{a}_1&\cdots&\pmb{a}_n\end{bmatrix} A=[a1an] ,其中 a j ∈ R m \pmb{a}_j\in\mathbb{R}^m ajRm C ( A ) C(\pmb{A}) C(A) 是列向量的线性组合。
  • 零空间(nullspace): N ( A ) = { x ∈ R n ∣ A x = 0 } N(\pmb{A})=\{\pmb{x}\in\mathbb{R}^n|\pmb{Ax}=\pmb{0}\} N(A)={xRnAx=0}
  • 行空间(row space):是转置矩阵 A T \pmb{A}^{\text{T}} AT 的列空间, C ( A T ) C(\pmb{A}^{\text{T}}) C(AT)

因为矩阵的行秩等于列秩,即 rank A = dim ⁡ C ( A ) = dim ⁡ C ( A T ) \text{rank}\pmb{A}=\dim C(\pmb{A})=\dim C(\pmb{A}^{\text{T}}) rankA=dimC(A)=dimC(AT) ,于是“秩—零化度定理”可以写成:

n = dim ⁡ N ( A ) + dim ⁡ C ( A T ) n = \dim N(\pmb{A}) + \dim C(\pmb{A}^{\text{T}}) n=dimN(A)+dimC(AT)
将原矩阵转置,即得:

m = dim ⁡ N ( A T ) + dim ⁡ C ( A ) m=\dim N(\pmb{A}^{\text{T}})+\dim C(\pmb{A}) m=dimN(AT)+dimC(A)

  • 左零空间(left nullspace): N ( A T ) N(\pmb{A}^T) N(AT)

C ( A T ) , N ( A ) C(\pmb{A}^{\text{T}}),N(\pmb{A}) C(AT),N(A) R n \mathbb{R}^n Rn 的子空间, C ( A ) , N ( A T ) C(\pmb{A}),N(\pmb{A}^{\text{T}}) C(A),N(AT) R m \mathbb{R}^m Rm 的子空间。

秩—零化度定理已经说明了矩阵基本子空间的维数关系。

以上四个矩阵的基本子空间如下图所示:
在这里插入图片描述

在《机器学习数学基础》第 3 章 3.4 节“正交和投影”中,专门介绍了向量和向量空间的正交概念。此处就探讨矩阵的四个子空间的正交关系,这些关系就构成了线性代数的一个基本定理,即说明矩阵四个基本子空间的正交补的关系

S \pmb{S} S T \pmb{T} T 是向量空间 R p \mathbb{R}^p Rp 的两个子空间,若它们正交,记作 S ⊥ T \pmb{S}\bot\pmb{T} ST

在向量空间 R p \mathbb{R}^p Rp 中所有与 S \pmb{S} S 正交的向量称为正交补(orthogonal complement),记作 S ⊥ \pmb{S}^{\bot} S

p = dim ⁡ S + dim ⁡ S ⊥ p=\dim{\pmb{S}} + \dim\pmb{S}^{\bot} p=dimS+dimS S ∩ S ⊥ = { 0 } \pmb{S}\cap\pmb{S}^{\bot}=\{\pmb{0}\} SS={0}

基本子空间的正交关系

  • N ( A ) = C ( A T ) ⊥ N(\pmb{A})=C(\pmb{A}^{\text{T}})^{\bot} N(A)=C(AT)

  • N ( A T ) = C ( A ) ⊥ N(\pmb{A}^{\text{T}})=C(\pmb{A})^{\bot} N(AT)=C(A)

下图显示了四个基本子空间之间的正交关系:
在这里插入图片描述

证明

矩阵 A m × n \pmb{A}_{m\times n} Am×n 的零空间定义(参考文献 [4])可知:

A x = 0 ⟹ A x = [ A 的第 1 行 ( r o w 1 ) ⋮ A 的第 m 行 ( r o w m ) ] x = [ 0 ⋮ 0 ] \pmb{Ax}=0 \Longrightarrow \pmb{Ax}=\begin{bmatrix}A的第1行(row_1)\\\vdots\\A的第m行(row_m)\end{bmatrix}\pmb{x}=\begin{bmatrix}0\\\vdots\\0\end{bmatrix} Ax=0Ax= A的第1(row1)A的第m(rowm) x= 00
每个行向量与 x \pmb{x} x 的内积都是 0 0 0 ,所以 x \pmb{x} x 与所有行向量的线性组合正交,即 N ( A ) ⊥ C ( A T ) N(\pmb{A})\bot C(\pmb{A}^{\text{T}}) N(A)C(AT)

又因为 n = dim ⁡ N ( A ) + dim ⁡ C ( A T ) n = \dim N(\pmb{A}) + \dim C(\pmb{A}^{\text{T}}) n=dimN(A)+dimC(AT)

所以: N ( A ) = C ( A T ) ⊥ N(\pmb{A})=C(\pmb{A}^{\text{T}})^{\bot} N(A)=C(AT)

同样思路,对 A \pmb{A} A 转置,有:

A T y = [ A 的第 1 列 ( c o l 1 ) ⋮ A 的第 n 列 ( c o l n ) ] y = [ 0 ⋮ 0 ] \pmb{A}^{\text{T}}\pmb{y}=\begin{bmatrix}A的第1列(col_1)\\\vdots\\A的第n列(col_n)\end{bmatrix}\pmb{y}=\begin{bmatrix}0\\\vdots\\0\end{bmatrix} ATy= A的第1(col1)A的第n(coln) y= 00
矩阵 A \pmb{A} A 的每个列向量都与 y \pmb{y} y 正交,即 N ( A T ) = C ( A ) ⊥ N(\pmb{A}^{\text{T}})=C(\pmb{A})^{\bot} N(AT)=C(A)

为什么称为左零空间?

A T y = 0 \pmb{A}^{\text{T}}\pmb{y}=0 ATy=0 ,左右都取转置, y T A = 0 T \pmb{y}^{\text{T}}\pmb{A}=\pmb{0}^{\text{T}} yTA=0T y T \pmb{y}^{\text{T}} yT 位于 A \pmb{A} A 的左边,故称 N ( A T ) N(\pmb{A}^{\text{T}}) N(AT) 为左零空间。


http://www.ppmy.cn/embedded/160703.html

相关文章

【搜索文章】:搜索(es)+ 搜索记录(mongodb)+ 搜索联想词

需求 用户输入关键字时,可以检索出结果, 并且可以查看历史搜索情况, 还可以进行联想词展示。 ElasticSearch(搜索) 准备工作 使用docker安装es,配置ik分词器重新建一个search模块,用来写搜…

利用deepseek参与软件测试 基本架构如何 又该在什么环节接入deepseek

利用DeepSeek参与软件测试,可以考虑以下基本架构和接入环节: ### 基本架构 - **数据层** - **测试数据存储**:用于存放各种测试数据,包括正常输入数据、边界值数据、异常数据等,这些数据可以作为DeepSeek的输入&…

DeepSeek-R1:开源机器人智能控制系统的革命性突破

目录 引言 一、DeepSeek-R1 的概述 1.1 什么是 DeepSeek-R1? 1.2 DeepSeek-R1 的定位 二、DeepSeek-R1 的核心特性 2.1 实时控制能力 2.2 多传感器融合 2.3 路径规划与导航 2.4 人工智能集成 2.5 开源与模块化设计 2.6 跨平台支持 三、DeepSeek-R1 的技术…

Java并发编程笔记

Java并发基础知识补全 启动 启动线程的方式只有: 1、X extends Thread;,然后X.start 2、X implements Runnable;然后交给Thread运行 线程的状态 Java中线程的状态分为6种: 1. 初始(NEW):新创建了一个线程对象&…

【QT】控件 -- 多元素类 | 容器类 | 布局类

🔥 目录 一、多元素类1. List Widget -- 列表2. Table Widget -- 表格3. Tree Widget -- 树形 二、容器类1. Group Box -- 分组框2. Tab Widget -- 标签页 三、布局类1. 垂直布局【使用 QVBoxLayout 管理多个控件】【创建两个 QVBoxLayout】 2. 水平布局【使用 QHBo…

在亚马逊云科技上云原生部署DeepSeek-R1模型(上)

DeepSeek-R1在开源版本发布的第二天就登陆了亚马逊云科技AWS云平台,这个速度另小李哥十分震惊。这又让我想起了在亚马逊云科技全球云计算大会re:Invent2025里,亚马逊CEO Andy Jassy说过的:随着目前生成式AI应用规模的扩大,云计算的…

[论文笔记] Deepseek-R1R1-zero技术报告阅读

启发: 1、SFT&RL的训练数据使用CoT输出的格式,先思考再回答,大大提升模型的数学与推理能力。 2、RL训练使用群体相对策略优化(GRPO),奖励模型是规则驱动,准确性奖励和格式化奖励。 1. 总体概述 背景与目标 报告聚焦于利用强化学习(RL)提升大型语言模型(LLMs)…

c++计算机教程

目的 做出-*/%计算机 要求 做出可以计算-*/%的计算机 实现 完整代码 #include<bits/stdc.h> int main() {std::cout<<"加 减- 乘* 除/ 取余% \没有了|(因为可以算三位)"<<"\n"<<"提示:每打完一个符号或打完一个数,\…