langchain基础(二)

embedded/2025/1/31 14:01:16/

一、输出解析器(Output Parser)

作用:(1)让模型按照指定的格式输出;

(2)解析模型输出,提取所需的信息

1、逗号分隔列表

CommaSeparatedListOutputParser:规定模型输出为以逗号分隔的字符串形式(它是自然语言意义上的列表,不是 Python 意义上的列表),解析时再将逗号分隔的字符串转成列表。

#使用CommaSeparatedListOutputParser限制模型输出格式,并对输出进行解析,将其转换为列表形式。from langchain.output_parsers import CommaSeparatedListOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOpenAI# 初始化模型
model=ChatOpenAI(model="gpt-3.5-turbo",base_url="https://api.gptsapi.net/v1",)#构建消息列表
prompt = ChatPromptTemplate.from_messages([ #构建提示模板("system", "{parser_instructions}"),("human", "列出5个{subject}色系的十六进制颜色码。")
])output_parser=CommaSeparatedListOutputParser() #创建输出解析器(以逗号分隔的列表)
parser_instructions=output_parser.get_format_instructions() #获取解析器的指令
print(parser_instructions) #Your response should be a list of comma separated values, eg: `foo, bar, baz` or `foo,bar,baz`final_prompt=prompt.invoke( #将变量填充,生成最终提示{"parser_instructions":parser_instructions,"subject":"莫兰迪"}
)# 调用模型并输出结果
response=model.invoke(final_prompt)
print(type(response)) #<class 'langchain_core.messages.ai.AIMessage'>
print(response.content) # #F0A202, #FFCD75, #F8E6A0, #EAE0C8, #E1D9B7response2list=output_parser.invoke(response) #使用output_parser的invoke方法对模型的响应response进行解析
print(response2list) #['#F0A202', '#FFCD75', '#F8E6A0', '#EAE0C8', '#E1D9B7']

系统消息("{parser_instructions}"),此消息位置用于传递输出解析器的指令,告诉模型如何格式化输出。

创建CommaSeparatedListOutputParser实例output_parser,用于解析模型输出。

通过output_parser.get_format_instructions()获取输出格式指令,这些指令会告诉模型应以逗号分隔的列表形式输出结果。打印这些指令可查看具体内容,例如:“你的回答应该是一个逗号分隔的列表,不包含任何其他解释或说明。”

使用output_parserinvoke方法对模型的响应response进行解析。output_parser会按照之前定义的格式指令,将模型输出转换为 Python 列表。

对于output_parser的invoke函数,

Union[str, BaseMessage] 是 Python typing 模块中的类型注解,表示 input 参数可以是 str 类型(字符串类型)或者 BaseMessage 类型。Union 用于指定一个参数可以是多种类型中的任意一种。 

 2、JSON

# 从给定的书籍概述中提取书名、作者以及书籍体裁等信息,并将提取结果解析为 Pydantic 模型对象from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import ChatPromptTemplate
from pydantic import BaseModel,Field
from typing import List
from langchain_community.chat_models import ChatOpenAI# 初始化模型
model=ChatOpenAI(model="gpt-3.5-turbo",base_url="https://api.gptsapi.net/v1",)# 消息列表
## 定义数据输出和解析格式,获取parser_instructions
class BookInfo(BaseModel):book_name:str=Field(description="书籍的名字",example="百年孤独")author_name:str=Field(description="书籍的作者",example="加西亚·马尔克斯")genres:List[str]=Field(description="书籍的体裁",example=["小说","文学"])output_parser=PydanticOutputParser(pydantic_object=BookInfo) #将BookInfo类作为参数传递,用于将模型输出解析为BookInfo对象
parser_instructions=output_parser.get_format_instructions()
print(parser_instructions)## 构建提示模板
prompt=ChatPromptTemplate.from_messages([("system","{parser_instructions}。你输出的结果请使用中文。"),("human","请你帮我从书籍概述中,提取书名、作者,以及书籍的体裁。书籍概述会被三个#符号包围。\n###{book_introduction}###")]
)book_introduction="""
《明朝那些事儿》,作者是当年明月。2006 年 3 月在天涯社区首次发表,
2009 年 3 月 21 日连载完毕,边写作边集结成书出版发行,一共 7 本。
《明朝那些事儿》主要讲述的是从 1344 年到 1644 年这三百年间关于明朝的一些故事。
以史料为基础,以年代和具体人物为主线,并加入了小说的笔法,语言幽默风趣。
对明朝十六帝和其他王公权贵和小人物的命运进行全景展示,
尤其对官场政治、战争、帝王心术着墨最多,并加入对当时政治经济制度、人伦道德的演义。
它以一种网络语言向读者娓娓道出三百多年关于明朝的历史故事、人物。
其中原本在历史中陌生、模糊的历史人物在书中一个个变得鲜活起来。
《明朝那些事儿》为读者解读历史中的另一面,让历史变成一部活生生的生活故事。"""## 将格式指令和书籍概述填充到提示模板中,生成最终的提示
final_prompt=prompt.invoke({"parser_instructions":parser_instructions,"book_introduction":book_introduction}
)# 调用模型并输出结果
response=model.invoke(final_prompt)
print(response.content)response2bookinfo=output_parser.invoke(response) #将模型的响应response解析为BookInfo对象response2bookinfo
print(response2bookinfo)
print(response2bookinfo.book_name)
print(response2bookinfo.author_name)
print(response2bookinfo.genres)

1、pydantic是一个功能强大的python库,主要用于数据验证、数据解析和数据序列化。

数据验证:

(1)类型检查:对输入的数据进行严格的类型检查,确保数据符合模型定义的类型。例如,在定义一个用户模型时,可以指定用户的年龄为整数类型,如果传入的数据不是整数,pydantic 会抛出验证错误。

(2)范围和约束检查:为字段设置范围和约束条件,如最大长度、最小长度、最大值、最小值等。

数据解析:

自动类型转换: 可以自动将输入的数据转换为模型定义的类型。例如,输入的字符串形式的数字可以自动转换为整数或浮点数。

数据序列化:

模型实例可以方便地转换为字典(.dict)或 JSON 字符串(.json),便于数据的存储和传输。

补充:dict和json的区别

如果你只在 Python 内部处理数据,字典可能更合适;而如果涉及到数据的传输或存储,尤其是跨系统的交互,JSON 字符串通常是更好的选择。

2、BaseModelField来自pydantic库,它们具有以下作用:

BaseModel是一个基类,用于创建数据模型类。通过继承BaseModel,可以快速定义具有数据验证、序列化和反序列化等功能的数据模型。

比如BookInfo类继承自BaseModel,这使得BookInfo类可以利用pydantic提供的自动验证功能,确保数据符合定义的类型和约束条件。

Field是用于定义模型字段的函数。它为模型中的字段(book_nameauthor_namegenres)提供额外的元数据和配置选项,如字段的描述(descripton)、示例(example)等。

这些信息在生成文档、进行数据验证以及帮助开发者、AI理解代码逻辑等方面都非常有帮助。

3、打印指令print(parser_instructions)

开头部分说明了输出应该被格式化为一个符合给定 JSON 模式的 JSON 实例,并通过一个示例展示了什么样的输出是符合模式的,什么样的输出是不符合模式的。

 JSON Schema(schema模式,用于规范实际存储的书籍信息的结构和规则):“说明书”

输出json:

 4、输出的json本质上是字符串,将其转为类实例更容易提取对应信息

result.book_name就可以直接得到书名了。

5、from typing import List

在 Python 3.9 之前需要引入 List 来实现更精确的类型提示,而 Python 3.9 及以后可以直接使用内置的 list 完成类似功能。不过,为了保持代码在不同 Python 版本之间的兼容性,很多项目仍然会使用 typing 模块中的类型。


http://www.ppmy.cn/embedded/158372.html

相关文章

记录一个连不上docker中的mysql的问题

引言 使用的debian12,不同发行版可能有些许差异&#xff0c;连接使用的工具是navicat lite 本来是毫无思绪的&#xff0c;以前在云服务器上可能是防火墙的问题&#xff0c;但是这个桌面环境我压根没有使用防火墙。 直到 ying192:~$ mysql -h127.0.0.1 -uroot ERROR 1045 (28…

【精选】基于数据挖掘的招聘信息分析与市场需求预测系统 职位分析、求职者趋势分析 职位匹配、人才趋势、市场需求分析数据挖掘技术 职位需求分析、人才市场趋势预测

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

汇编的使用总结

一、汇编的组成 1、汇编指令&#xff08;指令集&#xff09; 数据处理指令: 数据搬移指令 数据移位指令 位运算指令 算术运算指令 比较指令 跳转指令 内存读写指令 状态寄存器传送指令 异常产生指令等 2、伪指令 不是汇编指令&#xff0c;但是可以起到指令的作用&#xff0c;伪…

LVGL+FreeRTOS实战项目:智能健康助手(lcd篇)

1.8寸彩色TFT显示屏简介 接线图 我们选用的是分辨率为128*160的彩色显示屏&#xff0c;采用的SPI接口&#xff0c;通过我们STM32的SPI外设&#xff0c;来和我们的屏幕进行通信&#xff0c;以显示我们需要显示的图片。 软件部分 #include "lcd_driver.h"//液晶IO初始…

selenium自动化测试框架——面试题整理

目录 1. 什么是 Selenium&#xff1f;它的工作原理是什么&#xff1f; 2. Selenium 主要组件 3. 常见 WebDriver 驱动 4. Selenium 如何驱动浏览器&#xff1f; 5. WebDriver 协议是什么&#xff1f; 6. Page Object 模式与 Page Factory 7. 如何判断元素是否可见&#x…

第七章 C - D 开头的术语

文章目录 第七章 C - D 开头的术语当前设备 (current device)当前目录 (current directory)基于游标的 SQL (cursor-based SQL)游标 (cursor)自定义存储 (custom storage) 以 D 开头的术语数据库 (database)数据库缓存 (database cache)数据库加密 (database encryption)数据库…

ubuntu 把安装好的 wine软件 打包 到另外一台机器

ubuntu迁移已安装的软件到新的机器上_如何把 一台主机的软件 拷贝到另外台机器 ubuntu-CSDN博客 sudo apt-get install apt-clone原来机器备份&#xff1a;sudo apt-clone clone dst_add --with-dpkg-repack备份到dst_add 下&#xff0c;会生成一个 tar 包 假设为 clone.ta…

日志技术的使用

日志技术 概述 什么是日志&#xff1f; 日志就好比生活中的日记&#xff0c;可以随时随地记录你生活中的点点滴滴。 程序中的日志&#xff0c;是用来记录应用程序的运行信息、状态信息、错误信息的。 为什么要在程序中记录日志呢&#xff1f; 便于追踪应用程序中的数据信息…