yolov11配置环境,实现OBB带方向目标检测

embedded/2025/1/24 21:37:35/

1. 安装GPU驱动,cuda

验证安装,nvidia-smi命令查看状态

nvcc -V查看cuda版本, 按安装后提示配置路径。 

注意: 

cuda选择版本, 对pytorch支持有关系,目前pytorch最高支持到11.8 ,实测A5000装530驱动,安装cuda12.2会无法正确运行,可以降级安装cuda11.8,可以完美匹配。

2. 安装pytorch

用conda安装,确保版本兼容

conda install pytorch

验证安装正确,且cuda支持OK, 

 

3. 安装python虚拟环境,方便测试

安装配置miniconda

miniconda安装-CSDN博客

4. yolo环境配置

仓库: 

GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

官方文档,安装最好用conda方式: 

快速入门 -Ultralytics YOLO 文档

安装过程遇到的错误及排查: 

 undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12
是torch版本匹配问题,降级到cuda11.8

官方有conda安装方式,但是外网限制问题,无法安装,会报错,连接不上conda

conda install -c conda-forge ultralytics

git安装

git目录后用pip安装可以正常使用

pip install -e .

测试python导入环境

命令行测试图片: 

 yolo predict model=yolo11s.pt source='https://ultralytics.com/images/bus.jpg' imgsz=320

命令行预测(predict)视频: 

yolo predict model=yolo11n-seg.pt source=./1.mp4  imgsz=320

验证训练流程: 

yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01

训练结果 


(py39yolov11) hy@hy-C621-WD12-IPMI:~/yolopan/ultralytics$ yolo train data=coco8.yaml model=yolo                                          11n.pt epochs=10 lr0=0.01
Ultralytics 8.3.63 🚀 Python-3.9.21 torch-2.5.1+cu124 CUDA:0 (NVIDIA RTX A5000, 24248MiB)
engine/trainer: task=detect, mode=train, model=yolo11n.pt, data=coco8.yaml, epochs=10, time=Non                                          e, patience=100, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, work                                          ers=8, project=None, name=train2, exist_ok=False, pretrained=True, optimizer=auto, verbose=True                                          , seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resu                                          me=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=T                                          rue, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=N                                          one, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream                                          _buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=F                                          alse, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=Fal                                          se, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, ker                                          as=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None,                                           nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_                                          momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h                                          =0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0                                          , flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip,                                           auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save                                          _dir=/home/hy/yolopan/ultralytics/runs/detect/train2from  n    params  module                                       arguments                                             0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2                                          ]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3,                                           2]2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1,                                           False, 0.25]3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3,                                           2]4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1,                                           False, 0.25]5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3                                          , 2]6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1                                          , True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3                                          , 2]8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1                                          , True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5                                          ]10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1                                          ]11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'n                                          earest']12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                                                   13                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1                                          , False]14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'n                                          earest']15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                                                   16                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1,                                           False]17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3,                                           2]18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                                                   19                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1                                          , False]20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3                                          , 2]21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                                                   22                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1                                          , True]23        [16, 19, 22]  1    464912  ultralytics.nn.modules.head.Detect           [80, [64, 12                                          8, 256]]
YOLO11n summary: 319 layers, 2,624,080 parameters, 2,624,064 gradients, 6.6 GFLOPsTransferred 499/499 items from pretrained weights
Freezing layer 'model.23.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks...
AMP: checks passed ✅
train: Scanning /home/hy/yolopan/datasets/coco8/labels/train.cache... 4 images, 0 backgrounds,
val: Scanning /home/hy/yolopan/datasets/coco8/labels/val.cache... 4 images, 0 backgrounds, 0 co
Plotting labels to /home/hy/yolopan/ultralytics/runs/detect/train2/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'mom             entum' automatically...
optimizer: AdamW(lr=0.000119, momentum=0.9) with parameter groups 81 weight(decay=0.0), 88 weight(decay=0.0005), 87 bias(dec             ay=0.0)
Image sizes 640 train, 640 val
Using 8 dataloader workers
Logging results to /home/hy/yolopan/ultralytics/runs/detect/train2
Starting training for 10 epochs...
Closing dataloader mosaicEpoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/10     0.692G      1.059      1.862      1.417         13        640: 100%|██████████| 1/1 [00:01<00:00,  1.03s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00,all          4         17      0.579       0.85      0.878      0.634Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/10     0.692G      1.219      2.578      1.548         13        640: 100%|██████████| 1/1 [00:00<00:00,  7.97it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00,all          4         17      0.582       0.85      0.849      0.631Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/10     0.692G     0.9898      1.863      1.466         13        640: 100%|██████████| 1/1 [00:00<00:00,  9.93it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00,all          4         17        0.6       0.85      0.849      0.648Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/10     0.692G       1.12      1.911      1.406         13        640: 100%|██████████| 1/1 [00:00<00:00, 10.29it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00,all          4         17      0.613       0.85       0.85      0.649Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/10      0.69G      0.916      2.056      1.149         13        640: 100%|██████████| 1/1 [00:00<00:00,  6.19it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 25.48it/s]all          4         17      0.623       0.85      0.851      0.649Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/10     0.711G     0.9636      2.127      1.297         13        640: 100%|██████████| 1/1 [00:00<00:00,  9.93it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 23.77it/s]all          4         17      0.626       0.85      0.853      0.651Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/10     0.719G      1.204      2.029      1.541         13        640: 100%|██████████| 1/1 [00:00<00:00,  9.16it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 28.18it/s]all          4         17      0.624       0.85       0.89       0.64Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/10     0.711G      1.163       1.71      1.323         13        640: 100%|██████████| 1/1 [00:00<00:00,  9.21it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 28.27it/s]all          4         17      0.636       0.85      0.855      0.633Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/10     0.719G      1.048      1.896      1.427         13        640: 100%|██████████| 1/1 [00:00<00:00,  8.56it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 26.34it/s]all          4         17      0.636       0.85      0.855      0.633Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/10     0.711G     0.9268      1.613      1.245         13        640: 100%|██████████| 1/1 [00:00<00:00,  7.31it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 26.95it/s]all          4         17      0.635       0.85      0.858      0.63310 epochs completed in 0.002 hours.
Optimizer stripped from /home/hy/yolopan/ultralytics/runs/detect/train2/weights/last.pt, 5.5MB
Optimizer stripped from /home/hy/yolopan/ultralytics/runs/detect/train2/weights/best.pt, 5.5MBValidating /home/hy/yolopan/ultralytics/runs/detect/train2/weights/best.pt...
Ultralytics 8.3.63 🚀 Python-3.9.21 torch-2.5.1+cu124 CUDA:0 (NVIDIA RTX A5000, 24248MiB)
YOLO11n summary (fused): 238 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 33.59it/s]all          4         17      0.626       0.85      0.853      0.634person          3         10      0.614        0.6      0.604      0.281dog          1          1      0.552          1      0.995      0.796horse          1          2      0.736          1      0.995      0.675elephant          1          2      0.388        0.5      0.537      0.261umbrella          1          1      0.589          1      0.995      0.895potted plant          1          1      0.877          1      0.995      0.895
Speed: 0.2ms preprocess, 2.3ms inference, 0.0ms loss, 0.8ms postprocess per image
Results saved to /home/hy/yolopan/ultralytics/runs/detect/train2
💡 Learn more at https://docs.ultralytics.com/modes/train

验证OBB测试环境

 yolo obb predict model=yolo11n-obb.pt source='https://ultralytics.com/images/boats.jpg'

识别效果: 

验证OBB训练数据

支持的数据集包括: 

支持的数据集

目前支持以下带有定向边框的数据集:

  • DOTA-v1:DOTA 数据集的第一个版本,提供了一套全面的航空图像,并带有用于物体检测的定向边界框。
  • DOTA-v1.5:DOTA 数据集的中间版本,与 DOTA-v1 相比提供了更多注释和改进,用于增强物体检测任务。
  • DOTA-v2:DOTA(用于航空图像中物体检测的大规模数据集)第 2 版强调从航空角度进行检测,包含 170 万个实例和 11 268 幅图像的定向边界框。
  • DOTA8:完整 DOTA 数据集的 8 幅图像子集,适用于测试工作流程和 OBB 培训的持续集成 (CI) 检查。 ultralytics 存放处。

只是测试,可以用dota8跑流程,把数据下载到本地,解压到/path/datasets/

 https://ultralytics.com/assets/dota8.zip

也可以先把obb模型下载,

https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt

 用rolabelimg标注的数据集是

 训练命令: 

yolo obb train data=dota8.yaml model=yolo11n-obb.pt epochs=10 imgsz=1024


(py39yolov11) hy@hy-C621-WD12-IPMI:~/yolopan/ultralytics$ yolo obb train data=dota8.yaml model=yolo11n-obb.pt epochs=10 imgsz=1024
Ultralytics 8.3.63 🚀 Python-3.9.21 torch-2.5.1+cu124 CUDA:0 (NVIDIA RTX A5000, 24248MiB)
engine/trainer: task=obb, mode=train, model=yolo11n-obb.pt, data=dota8.yaml, epochs=10, time=None, patience=100, batch=16, imgsz=1024, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=train3, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, stream_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=None, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=flip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, save_dir=/home/hy/yolopan/ultralytics/runs/obb/train3
Overriding model.yaml nc=80 with nc=15from  n    params  module                                       arguments0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1, True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1, True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1]11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]13                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1, False]14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]16                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1, False]17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]19                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1, False]20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]22                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]23        [16, 19, 22]  1    505264  ultralytics.nn.modules.head.OBB              [15, 1, [64, 128, 256]]
YOLO11n-obb summary: 344 layers, 2,664,432 parameters, 2,664,416 gradients, 6.7 GFLOPsTransferred 541/541 items from pretrained weights
Freezing layer 'model.23.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks...
AMP: checks passed ✅
train: Scanning /home/hy/yolopan/datasets/dota8/labels/train... 4 images, 0 backgrounds, 0 corrupt: 100%|██████████| 4/4 [00:00<00:00, 52
train: New cache created: /home/hy/yolopan/datasets/dota8/labels/train.cache
val: Scanning /home/hy/yolopan/datasets/dota8/labels/val... 4 images, 0 backgrounds, 0 corrupt: 100%|██████████| 4/4 [00:00<00:00, 625.25
val: New cache created: /home/hy/yolopan/datasets/dota8/labels/val.cache
Plotting labels to /home/hy/yolopan/ultralytics/runs/obb/train3/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.000526, momentum=0.9) with parameter groups 87 weight(decay=0.0), 97 weight(decay=0.0005), 96 bias(decay=0.0)
Image sizes 1024 train, 1024 val
Using 8 dataloader workers
Logging results to /home/hy/yolopan/ultralytics/runs/obb/train3
Starting training for 10 epochs...
Closing dataloader mosaicEpoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/10      1.62G     0.7865     0.4889      1.274        125       1024: 100%|██████████| 1/1 [00:01<00:00,  1.34s/it]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00,  4.45it/s]all          4          8      0.944          1      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/10      1.67G     0.8854     0.4443      1.459        112       1024: 100%|██████████| 1/1 [00:00<00:00,  4.53it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 14.57it/s]all          4          8      0.942          1      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/10      1.68G     0.7773     0.4294      1.505         80       1024: 100%|██████████| 1/1 [00:00<00:00,  7.89it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 12.67it/s]all          4          8       0.94          1      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/10      1.73G     0.7714     0.4289      1.781        106       1024: 100%|██████████| 1/1 [00:00<00:00,  7.32it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 16.88it/s]all          4          8      0.936          1      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/10      1.72G     0.8086     0.5075      1.195        122       1024: 100%|██████████| 1/1 [00:00<00:00,  8.05it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 20.90it/s]all          4          8      0.934          1      0.995      0.804Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/10      1.64G     0.7477     0.4211      1.381        112       1024: 100%|██████████| 1/1 [00:00<00:00,  8.29it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 21.25it/s]all          4          8      0.932          1      0.995      0.797Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/10       1.6G     0.7764     0.4645      1.679         90       1024: 100%|██████████| 1/1 [00:00<00:00,  8.51it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 19.87it/s]all          4          8      0.926          1      0.995      0.797Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/10      1.67G     0.8228     0.6261      1.396        125       1024: 100%|██████████| 1/1 [00:00<00:00,  8.60it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 19.98it/s]all          4          8      0.923          1      0.995      0.797Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/10      1.65G     0.7391      0.415      1.557        116       1024: 100%|██████████| 1/1 [00:00<00:00,  7.82it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 19.98it/s]all          4          8       0.92          1      0.995      0.797Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/10      1.67G     0.7673     0.5214      1.182        121       1024: 100%|██████████| 1/1 [00:00<00:00,  7.47it/s]Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 19.88it/s]all          4          8      0.911          1      0.995      0.79710 epochs completed in 0.002 hours.
Optimizer stripped from /home/hy/yolopan/ultralytics/runs/obb/train3/weights/last.pt, 5.9MB
Optimizer stripped from /home/hy/yolopan/ultralytics/runs/obb/train3/weights/best.pt, 5.9MBValidating /home/hy/yolopan/ultralytics/runs/obb/train3/weights/best.pt...
Ultralytics 8.3.63 🚀 Python-3.9.21 torch-2.5.1+cu124 CUDA:0 (NVIDIA RTX A5000, 24248MiB)
YOLO11n-obb summary (fused): 257 layers, 2,656,648 parameters, 0 gradients, 6.6 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 1/1 [00:00<00:00, 25.32it/s]all          4          8      0.933          1      0.995      0.797baseball diamond          3          4      0.879          1      0.995      0.828basketball court          1          3      0.958          1      0.995      0.866soccer ball field          1          1      0.962          1      0.995      0.697
Speed: 0.4ms preprocess, 2.4ms inference, 0.0ms loss, 1.7ms postprocess per image
Results saved to /home/hy/yolopan/ultralytics/runs/obb/train3
💡 Learn more at https://docs.ultralytics.com/modes/train

速度还行。 

整理自己的数据集,用来训练光伏的带方向框检测; 

标注数据(带倾斜框,数据格式?) 

用rolabelimg标注数据为xml格式,需要转换成txt格式,才能调用类似dota8的格式训练; 

lableme标注的是json格式,都需要转换。 

先转换xml为dota的txt格式,然后用yolo自带的脚本再转换成yolo-obb的txt格式: 

import syssys.path.append('/home/code/wll/code/ultralytics-main-OBB/ultralytics')from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb('/home/code/wll/code/ultralytics-main-OBB/myData')

执行数据集: 


>>> from ultralytics.data.converter import convert_dota_to_yolo_obb
>>> convert_dota_to_yolo_obb('../my_obb_datasets')
Processing train images: 100%|██████████| 16/16 [00:00<00:00, 102456.28it/s]
Processing val images: 100%|██████████| 6/6 [00:00<00:00, 70492.50it/s]

 数据集格式必须参照: 

           - DOTA├─ images│   ├─ train│   └─ val└─ labels├─ train_original└─ val_originalAfter execution, the function will organize the labels into:- DOTA└─ labels├─ train└─ val

注意converter代码必须修改两处: 

一是classname的列表,另外就是文件类型; 

class_mapping = {"module_front":0,"module_back":1# "plane": 0,# "ship": 1,# "storage-tank": 2,# "baseball-diamond": 3,# "tennis-court": 4,# "basketball-court": 5,# "ground-track-field": 6,# "harbor": 7,# "bridge": 8,# "large-vehicle": 9,# "small-vehicle": 10,# "helicopter": 11,# "roundabout": 12,# "soccer-ball-field": 13,# "swimming-pool": 14,# "container-crane": 15,# "airport": 16,# "helipad": 17,}def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir):"""Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory."""orig_label_path = orig_label_dir / f"{image_name}.txt"save_path = save_dir / f"{image_name}.txt"print("debug",orig_label_dir,save_dir)with orig_label_path.open("r") as f, save_path.open("w") as g:lines = f.readlines()for line in lines:parts = line.strip().split()if len(parts) < 9:continueclass_name = parts[8]class_idx = class_mapping[class_name]coords = [float(p) for p in parts[:8]]normalized_coords = [coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)]formatted_coords = [f"{coord:.6g}" for coord in normalized_coords]g.write(f"{class_idx} {' '.join(formatted_coords)}\n")for phase in ["train", "val"]:image_dir = dota_root_path / "images" / phaseorig_label_dir = dota_root_path / "labels" / f"{phase}_original"save_dir = dota_root_path / "labels" / phasesave_dir.mkdir(parents=True, exist_ok=True)print("debug........")image_paths = list(image_dir.iterdir())for image_path in TQDM(image_paths, desc=f"Processing {phase} images"):#  if image_path.suffix != ".jpg": # ".png":#      continue

然后就可以启动训练命令了: 


(py39yolopannew) hy@hy-C621-WD12-IPMI:~/yolopan/ultralytics$ yolo obb train data=my_obb.yaml mo          del=yolo11n-obb.pt epochs=10
Ultralytics 8.3.59 🚀 Python-3.9.21 torch-2.5.1+cu124 CUDA:0 (NVIDIA RTX A5000, 24248MiB)
engine/trainer: task=obb, mode=train, model=yolo11n-obb.pt, data=my_obb.yaml, epochs=10, time=N          one, patience=100, batch=16, imgsz=1024, save=True, save_period=-1, cache=False, device=None, w          orkers=8, project=None, name=train6, exist_ok=False, pretrained=True, optimizer=auto, verbose=T          rue, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, r          esume=False, amp=True, fraction=1.0, profile=False, freeze=None, multi_scale=False, overlap_mas          k=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, con          f=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, vid_stride=1, str          eam_buffer=False, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_mask          s=False, embed=None, show=False, save_frames=False, save_txt=False, save_conf=False, save_crop=          False, show_labels=True, show_conf=True, show_boxes=True, line_width=None, format=torchscript,           keras=False, optimize=False, int8=False, dynamic=False, simplify=True, opset=None, workspace=No          ne, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warm          up_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, nbs=64, hs          v_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=          0.0, flipud=0.0, fliplr=0.5, bgr=0.0, mosaic=1.0, mixup=0.0, copy_paste=0.0, copy_paste_mode=fl          ip, auto_augment=randaugment, erasing=0.4, crop_fraction=1.0, cfg=None, tracker=botsort.yaml, s          ave_dir=/home/hy/yolopan/ultralytics/runs/obb/train6
Overriding model.yaml nc=80 with nc=2from  n    params  module                                       arguments             0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2          ]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3,           2]2                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1,           False, 0.25]3                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3,           2]4                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1,           False, 0.25]5                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3          , 2]6                  -1  1     87040  ultralytics.nn.modules.block.C3k2            [128, 128, 1          , True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3          , 2]8                  -1  1    346112  ultralytics.nn.modules.block.C3k2            [256, 256, 1          , True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5          ]10                  -1  1    249728  ultralytics.nn.modules.block.C2PSA           [256, 256, 1          ]11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'n          earest']12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                   13                  -1  1    111296  ultralytics.nn.modules.block.C3k2            [384, 128, 1          , False]14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'n          earest']15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                   16                  -1  1     32096  ultralytics.nn.modules.block.C3k2            [256, 64, 1,           False]17                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3,           2]18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                   19                  -1  1     86720  ultralytics.nn.modules.block.C3k2            [192, 128, 1          , False]20                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3          , 2]21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                   22                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1          , True]23        [16, 19, 22]  1    502729  ultralytics.nn.modules.head.OBB              [2, 1, [64,           128, 256]]
YOLO11n-obb summary: 344 layers, 2,661,897 parameters, 2,661,881 gradients, 6.7 GFLOPsTransferred 535/541 items from pretrained weights
Freezing layer 'model.23.dfl.conv.weight'
AMP: running Automatic Mixed Precision (AMP) checks...
AMP: checks passed ✅
train: Scanning /home/hy/yolopan/my_obb_datasets/labels/train... 16 images, 0 backgrounds, 0 co
train: New cache created: /home/hy/yolopan/my_obb_datasets/labels/train.cache
val: Scanning /home/hy/yolopan/my_obb_datasets/labels/val... 6 images, 0 backgrounds, 0 corrupt
val: New cache created: /home/hy/yolopan/my_obb_datasets/labels/val.cache
Plotting labels to /home/hy/yolopan/ultralytics/runs/obb/train6/labels.jpg...
optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining bes          t 'optimizer', 'lr0' and 'momentum' automatically...
optimizer: AdamW(lr=0.001667, momentum=0.9) with parameter groups 87 weight(decay=0.0), 97 weig          ht(decay=0.0005), 96 bias(decay=0.0)
Image sizes 1024 train, 1024 val
Using 8 dataloader workers
Logging results to /home/hy/yolopan/ultralytics/runs/obb/train6
Starting training for 10 epochs...
Closing dataloader mosaicEpoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size1/10       5.8G      2.857      5.118      3.315        123       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00452       0.11    0.00731     0.0021Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size2/10      6.03G      2.661      4.933      3.164        120       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00454       0.11    0.00733     0.0021Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size3/10      6.24G      2.809      5.047      3.239        119       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00492      0.131    0.00655    0.00175Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size4/10      6.24G      2.799      5.143      3.208        123       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00533      0.153    0.00634    0.00129Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size5/10      6.04G      2.733      5.221      3.103        125       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00532      0.153    0.00671    0.00132Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size6/10      5.84G      2.894      5.016      3.415        125       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00577      0.175    0.00682    0.00158Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size7/10      5.84G      2.648      4.816      3.272        123       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00616      0.164    0.00687    0.00143Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size8/10      5.86G      2.949      5.435      3.323        125       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00673      0.186     0.0074    0.00151Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size9/10      5.87G      2.785      4.857      3.223        125       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00586      0.175    0.00542    0.00123Epoch    GPU_mem   box_loss   cls_loss   dfl_loss  Instances       Size10/10      5.87G      2.668      4.629      3.351        125       1024: 100%|██████████|Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00584      0.175    0.00537     0.001210 epochs completed in 0.004 hours.
Optimizer stripped from /home/hy/yolopan/ultralytics/runs/obb/train6/weights/last.pt, 5.8MB
Optimizer stripped from /home/hy/yolopan/ultralytics/runs/obb/train6/weights/best.pt, 5.8MBValidating /home/hy/yolopan/ultralytics/runs/obb/train6/weights/best.pt...
Ultralytics 8.3.59 🚀 Python-3.9.21 torch-2.5.1+cu124 CUDA:0 (NVIDIA RTX A5000, 24248MiB)
YOLO11n-obb summary (fused): 257 layers, 2,654,113 parameters, 0 gradients, 6.6 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|all          6         68    0.00455       0.11    0.00698    0.00199module_front          5         45    0.00659     0.0889     0.0125    0.00352module_back          2         23    0.00251       0.13    0.00148   0.000463
Speed: 0.2ms preprocess, 2.3ms inference, 0.0ms loss, 35.4ms postprocess per image
Results saved to /home/hy/yolopan/ultralytics/runs/obb/train6

用训练出来的模型验证测试数据集: 

(py39yolopannew) hy@hy-C621-WD12-IPMI:~/yolopan/ultralytics$ yolo obb predict model=/home/hy/yolopan/ultralytics/runs/obb/train6/weights/best.pt source='../my_obb_datasets/test/cam2_flv_2.jpg'                  Ultralytics 8.3.59 🚀 Python-3.9.21 torch-2.5.1+cu124 CUDA:0 (NVIDIA RTX A5000, 24248MiB)
YOLO11n-obb summary (fused): 257 layers, 2,654,113 parameters, 0 gradients, 6.6 GFLOPsimage 1/1 /home/hy/yolopan/ultralytics/../my_obb_datasets/test/cam2_flv_2.jpg: 576x1024 (no detections), 97.4ms
Speed: 8.0ms preprocess, 97.4ms inference, 35.4ms postprocess per image at shape (1, 3, 576, 1024)
Results saved to /home/hy/yolopan/ultralytics/runs/obb/predict3
💡 Learn more at https://docs.ultralytics.com/modes/predict

检查下结果: 训练10次的模型明显不能用; 

增加训练次数到1000次; 

中间检测到没有优化空间了就会自动停止: 

再对测试图片进行检测: 

得到的标注结果, 还有改善空间,流程已跑通。  

后续工作:

1)嵌入视频监测流程,作为detector调用

2)分析后视频的推流,更便于其他应用调用

3)分析结果呈现 


http://www.ppmy.cn/embedded/156670.html

相关文章

TaskBuilder数据添加页面前后端交互原理解析

在TaskBuilder内打开学员管理项目前端文件里的add.tfp页面&#xff0c;下面以这个文件为例介绍一下数据添加页面如何实现前后端的数据交互。 如果要将页面里输入项的数据提交到后台&#xff0c;需要将这些输入项都放到表单组件中&#xff0c;然后通过表单组件实现数据的统一提交…

Redis超详细入门教程(基础篇)

目录 一、什么是Redis 二、安装Redis 1、Windows系统安装 2、Linux系统安装 三、Redis通用命令 四、Redis基本命令 五、五种数据结构类型 5.1、String类型 5.2、List集合类型 5.3、Set集合类型 5.4、Hash集合类型 5.5、Zset有序集合类型 六、总结 一、什么是Redi…

分布式 IO 模块:开启药品罐装产线高效生产新纪元

在药品生产的精密领域&#xff0c;每一个环节都关乎着客户的健康与安全。药品罐装产线作为药品生产的关键环节&#xff0c;其高效运行与精准控制至关重要。明达技术MR30分布式 IO 模块&#xff0c;正以其卓越的性能&#xff0c;成为实现药品罐装产线高效控制&#xff0c;确保产…

rabbitmq单机与集群模式的部署

单机部署 安装版本说明&#xff1a;erlang 20.3 – 21.x rabbitmq 3.7.13 修改主机名和host文件 hostnamectl set-hostname mq1vim /etc/hosts192.168.3.71 mq1 192.168.3.72 mq2 192.168.3.73 mq3由于RabbitMQ是基于Erlang&#xff08;面向高并发的语言&#xff09;语言开发…

不用安装双系统,如何在mac上玩windows游戏呢?

Mac软件推荐 随着技术的进步&#xff0c;越来越多的游戏公司开始发布 Mac 平台的游戏。虽然目前 Windows 系统仍然占据着主导地位&#xff0c;但 Mac 用户同样可以享受丰富的游戏体验。并且借助某些工具&#xff0c;可以实现 Mac 电脑玩 Windows 游戏的需求。 一、Mac 能玩哪些…

leetcode刷题记录(七十二)——146. LRU 缓存

&#xff08;一&#xff09;问题描述 146. LRU 缓存 - 力扣&#xff08;LeetCode&#xff09;146. LRU 缓存 - 请你设计并实现一个满足 LRU (最近最少使用) 缓存 [https://baike.baidu.com/item/LRU] 约束的数据结构。实现 LRUCache 类&#xff1a; * LRUCache(int capacity)…

C语言二级

//请编写函数fun()&#xff0c;该函数的功能是&#xff1a;计算并输出给定整数n的所有因 //子&#xff08;不包括1和自身&#xff09;之和。规定n的值不大于1000。例如&#xff0c;在主函数 //中从键盘给n输入的值为856&#xff0c;则输出为&#xff1a;sum 763。 //注意&…

Spring 是如何解决循环依赖问题

Spring 框架通过 三级缓存 机制来解决循环依赖问题。循环依赖是指两个或多个 Bean 相互依赖&#xff0c;形成一个闭环&#xff0c;例如 Bean A 依赖 Bean B&#xff0c;而 Bean B 又依赖 Bean A。Spring 通过提前暴露未完全初始化的 Bean 来解决这个问题。 以下是 Spring 解决…