顺序表和链表(详解)

embedded/2025/1/23 6:09:14/

线性表

线性表( linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串...
线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以数组和链式结构的形式存储。
注意我们学习数据结构也就是学习增删查改,后期会围绕这四个字进行讲解,本文的讲解会把基础模拟实现部分讲的很透彻,算法oj题可以基于基础知识向外扩展,有了基础数据结构理解相信算法oj题也很好拿下了

顺序表

2.1 概念及结构
顺序表是用一段 物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。
顺序表一般可以分为:
1. 静态顺序表:使用定长数组存储元素
2. 动态顺序表:使用动态开辟的数组存储。
静态顺序表只适用于确定知道需要存多少数据的场景。静态顺序表的定长数组导致N定大了,空间开多了浪费,开少了不够用。所以现实中基本都是使用动态顺序表,根据需要动态的分配空间大小,所以下面我们实现动态顺序表。

接口实现

我们一般需要定义3个变量,数组,容量和实际数据数量,因为要方便后续扩容操作

下面我会把每个接口的意义讲解,这部分需要结构体和动态内存的基础,我前边讲的很详细,可以去看看每个函数都会断言,所以我们不会每个都讲,但是大家一定要明白断言的意义,一般是防止对空指针操作和检查越界

顺序表的初始化,默认先开辟一块4个整形(我们假设存储整形)的空间,size和capacity置为0。

销毁,先释放malloc的空间,将指针置空,容量和size置0

打印数据,也就是遍历这个数组很简单,用下标访问数据

检查扩容操作,当实际数据数量等于容量,要扩容,当我们插入数据时,先判断是否需要扩容,再插入,这样就能实现简易版的vector了(注意要断言是因为防止传空指针)
pos是要插入的下标,end最后一个数据下标,size是实际数据个数
插入逻辑,要记得断言下标要大于等于0并且小于等于size,下标是0相当于头插,下标是size相当于尾插,这部分一定要画图,画图以后这个插入逻辑也就是挪动覆盖,下标<size是随机插入,下标=size是尾插
删除逻辑,断言+挪动数据覆盖逻辑

 

尾插很简单,(注释的部分和没注释的是两个版本,可以用常规思路扩容+尾插,也可以直接复用插入逻辑,把参数改成最后一个下标就行)

尾删,要记得先断言检查下标,有效数据个数一定要大于0才能尾删,也可以直接复用删除逻辑

头删很简单,可以直接复用插入逻辑,参数给0就行

头删也很简单,复用删除逻辑

修改逻辑很简单,一行代码,可是为什么这一行代码也封装成一个函数呢,因为我们最好不要直接访问数组数据,缺少断言检查,用这个函数可以防止我们传越界的参数

以上就是关于顺序表实现的全部逻辑,希望能对大家有用

顺序表实现的完整代码

seqlist.h
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>// 静态顺序表
//#define N 1000
//typedef int SLDataType;
//
//struct SeqList
//{
//	SLDataType a[N];
//	int size;
//};// 动态顺序表
typedef int SLDataType;typedef struct SeqList
{SLDataType* a;int size;        // 存储有效数据个数int capacity;    // 空间大小
}SL;// 管理数据 -- 增删查改
void SLInit(SL* ps);
void SLDestroy(SL* ps);
void SLPrint(SL* ps);
void SLCheckCapacity(SL* ps);// 头插头删 尾插尾删
void SLPushBack(SL* ps, SLDataType x);
void SLPopBack(SL* ps);
void SLPushFront(SL* ps, SLDataType x);
void SLPopFront(SL* ps);// 返回下标,没有找打返回-1
int SLFind(SL* ps, SLDataType x);// 在pos位置插入x
void SLInsert(SL* ps, int pos, SLDataType x);
// 删除pos位置的值
void SLErase(SL* ps, int pos);void SLModify(SL* ps, int pos, SLDataType x);

seqlist.c

#include"seqlist.h"void SLInit(SL* ps)
{assert(ps);ps->a = (SLDataType*)malloc(sizeof(SLDataType) * 4);if (ps->a == NULL){perror("malloc failed");exit(-1);//return;}ps->size = 0;ps->capacity = 4;
}void SLDestroy(SL* ps)
{assert(ps);free(ps->a);ps->a = NULL;ps->capacity = ps->size = 0;
}void SLPrint(SL* ps)
{assert(ps);for (int i = 0; i < ps->size; i++){printf("%d ", ps->a[i]);}printf("\n");
}void SLCheckCapacity(SL* ps)
{assert(ps);// 满了要扩容if (ps->size == ps->capacity){SLDataType* tmp = (SLDataType*)realloc(ps->a, ps->capacity * 2 * (sizeof(SLDataType)));if (tmp == NULL){perror("realloc failed");exit(-1);}ps->a = tmp;ps->capacity *= 2;}
}// 17:25继续
void SLPushBack(SL* ps, SLDataType x)
{assert(ps);/*SLCheckCapacity(ps);ps->a[ps->size] = x;ps->size++;*/SLInsert(ps, ps->size, x);
}void SLPopBack(SL* ps)
{assert(ps);// 温柔的检查//if (ps->size == 0)//return;// 暴力的检查//assert(ps->size > 0);ps->a[ps->size - 1] = 0;//ps->size--;SLErase(ps, ps->size - 1);
}void SLPushFront(SL* ps, SLDataType x)
{assert(ps);//SLCheckCapacity(ps);挪动数据//int end = ps->size - 1;//while (end >= 0)//{//	ps->a[end + 1] = ps->a[end];//	--end;//}//ps->a[0] = x;//ps->size++;SLInsert(ps, 0, x);
}void SLPopFront(SL* ps)
{assert(ps);/*assert(ps->size > 0);int begin = 1;while (begin < ps->size){ps->a[begin - 1] = ps->a[begin];++begin;}ps->size--;*/SLErase(ps, 0);
}int SLFind(SL* ps, SLDataType x)
{assert(ps);for (int i = 0; i < ps->size; i++){if (ps->a[i] == x){return i;}}return -1;
}// 在pos位置插入x
void SLInsert(SL* ps, int pos, SLDataType x)
{assert(ps);assert(pos >= 0 && pos <= ps->size);SLCheckCapacity(ps);int end = ps->size - 1;while (end >= pos){ps->a[end + 1] = ps->a[end];--end;}ps->a[pos] = x;ps->size++;
}// 删除pos位置的值
void SLErase(SL* ps, int pos)
{assert(ps);assert(pos >= 0 && pos < ps->size);int begin = pos + 1;while (begin < ps->size){ps->a[begin - 1] = ps->a[begin];++begin;}ps->size--;
}void SLModify(SL* ps, int pos, SLDataType x)
{assert(ps);assert(pos >= 0 && pos < ps->size);ps->a[pos] = x;
}

还有一些测试用例,感兴趣的可以尝试运行一下,已经测试过了代码都是对的

#include<stdio.h>
#include"seqlist.h"void TestSeqList1()
{SL sl;SLInit(&sl);SLPushBack(&sl, 1);SLPushBack(&sl, 2);SLPushBack(&sl, 3);SLPushBack(&sl, 4);SLPushBack(&sl, 5);SLPushBack(&sl, 6);SLPushBack(&sl, 6);SLPushBack(&sl, 0);SLPushBack(&sl, 0);SLPrint(&sl);SLPopBack(&sl);SLPopBack(&sl);SLPrint(&sl);SLPopBack(&sl);SLPopBack(&sl);SLPopBack(&sl);SLPopBack(&sl);SLPopBack(&sl);SLPopBack(&sl);SLPopBack(&sl);//SLPopBack(&sl);//SLPopBack(&sl);/*SLPopBack(&sl);SLPopBack(&sl);SLPopBack(&sl);SLPopBack(&sl);*/SLPrint(&sl);SLPushBack(&sl, 1);SLPushBack(&sl, 2);SLPrint(&sl);SLDestroy(&sl);
}void TestSeqList2()
{SL sl;SLInit(&sl);SLPushBack(&sl, 1);SLPushBack(&sl, 2);SLPushBack(&sl, 3);SLPushBack(&sl, 4);SLPushBack(&sl, 5);SLPrint(&sl);SLPushFront(&sl, 10);SLPushFront(&sl, 20);SLPushFront(&sl, 30);SLPushFront(&sl, 40);SLPrint(&sl);SLDestroy(&sl);
}void TestSeqList3()
{SL sl;SLInit(&sl);SLPushBack(&sl, 1);SLPushBack(&sl, 2);SLPushBack(&sl, 3);SLPushBack(&sl, 4);SLPushBack(&sl, 5);SLPrint(&sl);SLPopFront(&sl);SLPopFront(&sl);SLPrint(&sl);SLPopFront(&sl);SLPopFront(&sl);SLPopFront(&sl);//SLPopFront(&sl);SLPrint(&sl);SLPushBack(&sl, 4);SLPushBack(&sl, 5);SLPrint(&sl);SLDestroy(&sl);
}void TestSeqList4()
{SL sl;SLInit(&sl);SLPushBack(&sl, 1);SLPushBack(&sl, 2);SLPushBack(&sl, 3);SLPushBack(&sl, 4);SLPushBack(&sl, 5);SLPushFront(&sl, -1);SLPushFront(&sl, -2);SLPrint(&sl);SLInsert(&sl, 3, 40);SLPrint(&sl);int x;scanf("%d", &x);int pos = SLFind(&sl, x);if (pos != -1){SLInsert(&sl, pos, x * 10);}SLPrint(&sl);SLDestroy(&sl);}void TestSeqList5()
{SL sl;SLInit(&sl);SLPushBack(&sl, 1);SLPushBack(&sl, 2);SLPushBack(&sl, 3);SLPushBack(&sl, 4);SLPushBack(&sl, 5);SLPrint(&sl);SLErase(&sl, 2);SLPrint(&sl);int x;scanf("%d", &x);int pos = SLFind(&sl, x);if (pos != -1){SLErase(&sl, pos);}SLPrint(&sl);SLDestroy(&sl);}void TestSeqList6()
{SL sl;SLInit(&sl);SLPushBack(&sl, 1);SLPushBack(&sl, 2);SLPushBack(&sl, 3);SLPushBack(&sl, 4);SLPushBack(&sl, 5);SLPrint(&sl);SLModify(&sl, 2, 20);sl.a[2] = 20;SLPrint(&sl);/*int x;scanf("%d", &x);int pos = SLFind(&sl, x);if (pos != -1){SLModify(&sl, pos, x*10);}SLPrint(&sl);*/int pos, x;scanf("%d%d", &pos, &x);//sl.a[pos] = x;SLModify(&sl, pos, x);SLPrint(&sl);SLDestroy(&sl);
}void TestSeqList7()
{SL sl;SLInit(&sl);SLPushBack(&sl, 1);SLPushBack(&sl, 2);SLPushBack(&sl, 3);SLPushBack(&sl, 4);SLPushBack(&sl, 5);SLPrint(&sl);SLPopFront(&sl);SLDestroy(&sl);
}int main()
{TestSeqList1();return 0;
}

相关oj题

27. 移除元素 - 力扣(LeetCode)

26. 删除有序数组中的重复项 - 力扣(LeetCode)

88. 合并两个有序数组 - 力扣(LeetCode)

顺序表的讲解基本结束,还有顺序表和链表的对比,在STL我已经写过了,可以看看是一个道理

链表

链表的概念及结构
概念:链表是一种 物理存储结构上非连续、非顺序的存储结构,数据元素的 逻辑顺序是通过链表中的 指针链接次序实现的 。
现实中链表存放的都是malloc出来的地址,是随机值,但是也不排除会有这种很规律的取值
我们要注意单链表是没有哨兵位,且只有一个next后继指针,头指针存放第一个节点的地址,后边的内存块如图所示,每个内存块存放有下一个内存块的地址,最后一个内存块存放NULL(这个是规则)

链表的分类

别看有这么多种链表,其实实际常用的也就是单链表和双向带头循环链表
其实学会这两种链表就行,单链表适合做oj题,双向链表适合存储数据
带头双向循环链表由哨兵位,哨兵位可以理解为不存有效数据的第一个头结点,遍历只会遍历有效数据结点,只有一个哨兵位等价于链表为NULL

链表的实现

 

注意单链表部分一定要学会传二级指针,因为我们要改变结构体指针的内容(当链表为空),因为没有哨兵位,只有一个头指针,后边的带头双向循环链表由哨兵位的头结点,就不用传二级指针了(单链表的增删查改的情况有些多,大致分为链表为空或者链表非空来讨论)

链表内部存储两个数据,一个是值x,一个是结构体指针*next(用来存放下一个结点的地址)

打印操作,参数是结构体变量的地址,拿到数据向后遍历,最后一个数据next为空,停下来

这个函数用来申请一个新节点的空间,并且初始化为NULL和x,类似c++的new

尾插操作,参数要传二级指针(也就是头结点指针的地址,这样在链表第一个节点为空的时候可以直接尾插)

链表不为空,要多定义一个尾指针,遍历链表到最后一个,将NULL改为新new处结点的地址,就完成链表的插入了(道理很简单,实在没想明白可以画图,数据结构部分就是要多画图才能学好)

头删很简单,先断言plist不能是NULL,空链表没必要删除了

先保存要删除结点的下一个结点地址,然后再free掉要删除的节点,并且让头指针指向新的首结点

尾删结点,是空链表或者只有一个结点的链表很简单,当两个以上的时候定义一个前驱指针tailprev,遍历链表,当tail的next是NULL的时候,跳出循环并且free掉尾指针指向的结点,将前驱指针的next置空,这样就完成了尾删很简单

头插很简单,先new(并不是c++的new,只是我想这样写)一个新节点,将新节点的next存放第一个结点的地址,plist存放新节点的地址,就完成头插

查询某个值,很简单遍历一下,找到就返回下标,没找到就返回NULL

在pos位置之前插入,如果我们要在第一个结点前插入,直接复用头插逻辑,其他情况我们要定义一个前驱指针prev,用来指向pos位置之前的结点,当prev指向要插入位置之前结点的时候,跳出循环,链接数据。很简单

删除pos位置的值,和插入逻辑相似,删除第一个节点直接复用头删逻辑,其他情况定义一个前驱指针,当prev指向pos之前的结点时,链接要删除节点左右节点,删除pos结点并且置空(也可以不置空,因为栈帧到此会销毁结束,我们也访问不到了)

以上就是我对单链表的理解,希望能帮到大家

链表完整源码

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>typedef int SLTDataType;typedef struct SListNode
{SLTDataType data;struct SListNode* next;
}SLTNode;void SLTPrint(SLTNode* phead);SLTNode* BuySListNode(SLTDataType x);
void SLTPushBack(SLTNode** pphead, SLTDataType x);
//SLTNode* SLTPushBack(SLTNode* phead, SLTDataType x);void SLTPushFront(SLTNode** pphead, SLTDataType x);void SLTPopBack(SLTNode** pphead);
void SLTPopFront(SLTNode** pphead);SLTNode* SLTFind(SLTNode* phead, SLTDataType x);// 在pos之前插入x
void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x);// 删除pos位置
void SLTErase(SLTNode** pphead, SLTNode* pos);

#include"slist.h"
void SLTPrint(SLTNode* phead)
{SLTNode* cur = phead;//while (cur != NULL)while (cur){printf("%d->", cur->data);cur = cur->next;}printf("NULL\n");
}SLTNode* BuySListNode(SLTDataType x)
{SLTNode* newnode = (SLTNode*)malloc(sizeof(SLTNode));if (newnode == NULL){perror("malloc fail");exit(-1);}newnode->data = x;newnode->next = NULL;return newnode;
}// 16:07继续
void SLTPushBack(SLTNode** pphead, SLTDataType x)
{assert(pphead);SLTNode* newnode = BuySListNode(x);if (*pphead == NULL){// 改变的结构体的指针,所以要用二级指针*pphead = newnode;}else{SLTNode* tail = *pphead;while (tail->next != NULL){tail = tail->next;}// 改变的结构体,用结构体的指针即可tail->next = newnode;}
}void SLTPushFront(SLTNode** pphead, SLTDataType x)
{assert(pphead);SLTNode* newnode = BuySListNode(x);newnode->next = *pphead;*pphead = newnode;
}void SLTPopBack(SLTNode** pphead)
{assert(pphead);// 1、空assert(*pphead);// 2、一个节点// 3、一个以上节点if ((*pphead)->next == NULL){free(*pphead);*pphead = NULL;}else{SLTNode* tailPrev = NULL;SLTNode* tail = *pphead;while (tail->next){tailPrev = tail;tail = tail->next;}free(tail);//tail = NULL;tailPrev->next = NULL;}
}void SLTPopFront(SLTNode** pphead)
{assert(pphead);// 空assert(*pphead);// 非空SLTNode* newhead = (*pphead)->next;free(*pphead);*pphead = newhead;
}SLTNode* SLTFind(SLTNode* phead, SLTDataType x)
{SLTNode* cur = phead;while (cur){if (cur->data == x){return cur;}cur = cur->next;}return NULL;
}void SLTInsert(SLTNode** pphead, SLTNode* pos, SLTDataType x)
{assert(pphead);assert(pos);if (pos == *pphead){SLTPushFront(pphead, x);}else{SLTNode* prev = *pphead;while (prev->next != pos){prev = prev->next;}SLTNode* newnode = BuySListNode(x);prev->next = newnode;newnode->next = pos;}
}// 删除pos位置
void SLTErase(SLTNode** pphead, SLTNode* pos)
{assert(pphead);assert(pos);if (pos == *pphead){SLTPopFront(pphead);}else{SLTNode* prev = *pphead;while (prev->next != pos){prev = prev->next;}prev->next = pos->next;free(pos);//pos = NULL;}
}

#define _CRT_SECURE_NO_WARNINGS 1
#include"slist.h"void TestSList1()
{int n;printf("请输入链表的长度:");scanf("%d", &n);printf("\n请依次输入每个节点的值:");SLTNode* plist = NULL;for (size_t i = 0; i < n; i++){int val;scanf("%d", &val);SLTNode* newnode = BuySListNode(val);// 头插newnode->next = plist;plist = newnode;}SLTPrint(plist);SLTPushBack(&plist, 10000);SLTPrint(plist);
}void TestSList2()
{SLTNode* plist = NULL;SLTPushBack(&plist, 1);SLTPushBack(&plist, 2);SLTPushBack(&plist, 3);SLTPushBack(&plist, 4);SLTPushBack(&plist, 5);SLTPrint(plist);SLTPushFront(&plist, 10);SLTPushFront(&plist, 20);SLTPushFront(&plist, 30);SLTPushFront(&plist, 40);SLTPrint(plist);
}void TestSList3()
{SLTNode* plist = NULL;SLTPushBack(&plist, 1);SLTPushBack(&plist, 2);SLTPushBack(&plist, 3);SLTPushBack(&plist, 4);SLTPushBack(&plist, 5);SLTPrint(plist);SLTPopBack(&plist);SLTPrint(plist);SLTPopBack(&plist);SLTPrint(plist);SLTPopBack(&plist);SLTPrint(plist);SLTPopBack(&plist);SLTPrint(plist);SLTPopBack(&plist);SLTPrint(plist);// SLTPopBack(&plist);// SLTPrint(plist);
}void TestSList4()
{SLTNode* plist = NULL;SLTPushBack(&plist, 1);SLTPushBack(&plist, 2);SLTPushBack(&plist, 3);SLTPushBack(&plist, 4);SLTPushBack(&plist, 5);SLTPrint(plist);SLTPopFront(&plist);SLTPrint(plist);SLTPopFront(&plist);SLTPrint(plist);SLTPopFront(&plist);SLTPrint(plist);SLTPopFront(&plist);SLTPrint(plist);SLTPopFront(&plist);//SLTPopFront(&plist);SLTPrint(plist);
}void TestSList5()
{SLTNode* plist = NULL;SLTPushBack(&plist, 1);SLTPushBack(&plist, 2);SLTPushBack(&plist, 3);SLTPushBack(&plist, 4);SLTPushBack(&plist, 5);SLTPrint(plist);SLTNode* pos = SLTFind(plist, 40);if (pos){pos->data *= 10;}SLTPrint(plist);int x;scanf("%d", &x);pos = SLTFind(plist, x);if (pos){SLTInsert(&plist, pos, x * 10);}SLTPrint(plist);
}int main()
{TestSList1();return 0;
}

双向链表的实现

带头双向循环链表,有前驱指针,后继指针和数据

最基础的申请新结点空间,赋值并且置空,后期new的雏形,申请空间+初始化都干了

这个是哨兵位头结点,会返回给外边的plist用来控制增删查改逻辑

打印逻辑,遍历链表并且打印值

在某个位置之前插入

pos之前插入很简单,定义一个posprev前驱指针,将newnode链接上去

牛逼的地方是,传哨兵位的下一个节点也就是头结点的指针,就成为头插了;传哨兵位指针,完成尾插,因为哨兵位的前一个节点就是整个链表最后一个数据

尾删

头删

删除逻辑很简单将要删除结点的前结点和后结点保存,删除pos位置节点,然后链接左右节点

尾插直接复用插入逻辑,传哨兵位指针过去就行,完成尾插,当然也可以自己实现,但是建议直接复用,节省代码

头插也就是在哨兵位下一个之前插入,直接复用

尾部删除,注意要断言(,当只有哨兵位结点时不能删除,此时有效数据为0),直接复用删除逻辑

头删直接复用删除逻辑,删除哨兵位下一个结点就是头删

最后还有一个求有效数据个数的代码,很简单,遍历链表到哨兵位结束也就是计算了有效数据(除哨兵位)

以上就是我对双向链表的理解,很透彻希望对大家有用

双向链表模拟实现完整代码

#include"List.h"LTNode* BuyLTNode(LTDataType x)
{LTNode* node = (LTNode*)malloc(sizeof(LTNode));if (node == NULL){perror("malloc fail");exit(-1);}node->data = x;node->next = NULL;node->prev = NULL;return node;
}LTNode* LTInit()
{LTNode* phead = BuyLTNode(0);phead->next = phead;phead->prev = phead;return phead;
}void LTPrint(LTNode* phead)
{assert(phead);printf("phead<=>");LTNode* cur = phead->next;while (cur != phead){printf("%d<=>", cur->data);cur = cur->next;}printf("\n");
}void LTPushBack(LTNode* phead, LTDataType x)
{assert(phead);LTInsert(phead, x);
}void LTPopBack(LTNode* phead)
{assert(phead);assert(phead->next != phead);LTErase(phead->prev);
}void LTPushFront(LTNode* phead, LTDataType x)
{assert(phead);LTInsert(phead->next, x);
}void LTPopFront(LTNode* phead)
{assert(phead);assert(phead->next != phead);LTErase(phead->next);
}int LTSize(LTNode* phead)
{assert(phead);int size = 0;LTNode* cur = phead->next;while (cur != phead){++size;cur = cur->next;}return size;
}// pos֮ǰx
void LTInsert(LTNode* pos, LTDataType x)
{assert(pos);LTNode* posPrev = pos->prev;LTNode* newnode = BuyLTNode(x);posPrev->next = newnode;newnode->prev = posPrev;newnode->next = pos;pos->prev = newnode;
}// ɾposλ
void LTErase(LTNode* pos)
{assert(pos);LTNode* posPrev = pos->prev;LTNode* posNext = pos->next;free(pos);posPrev->next = posNext;posNext->prev = posPrev;
}

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>typedef int LTDataType;
typedef struct ListNode
{struct ListNode* next;struct ListNode* prev;LTDataType data;
}LTNode;LTNode* BuyLTNode(LTDataType x);
LTNode* LTInit();
void LTPrint(LTNode* phead);
void LTPushBack(LTNode* phead, LTDataType x);
void LTPopBack(LTNode* phead);void LTPushFront(LTNode* phead, LTDataType x);
void LTPopFront(LTNode* phead);int LTSize(LTNode* phead);LTNode* LTFind(LTNode* phead, LTDataType x);// pos֮ǰx
void LTInsert(LTNode* pos, LTDataType x);
// ɾposλ
void LTErase(LTNode* pos);

#include"List.h"void TestList1()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPushFront(plist, 10);LTPushBack(plist, 10);LTPrint(plist);
}void TestList2()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopBack(plist);LTPopFront(plist);LTPrint(plist);LTPopFront(plist);LTPopFront(plist);LTPopFront(plist);//LTPopFront(plist);LTPrint(plist);
}void TestList3()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPushFront(plist, 10);LTPushFront(plist, 20);LTPushFront(plist, 30);LTPushFront(plist, 40);LTPrint(plist);
}void TestList4()
{LTNode* plist = LTInit();LTPushBack(plist, 1);LTPushBack(plist, 2);LTPushBack(plist, 3);LTPushBack(plist, 4);LTPushBack(plist, 5);LTPrint(plist);LTPopFront(plist);LTPrint(plist);LTPopBack(plist);LTPrint(plist);
}int main()
{TestList4();return 0;
}

链表面试oj题

203. 移除链表元素 - 力扣(LeetCode)

206. 反转链表 - 力扣(LeetCode)

876. 链表的中间结点 - 力扣(LeetCode)

21. 合并两个有序链表 - 力扣(LeetCode)

链表分割_牛客题霸_牛客网

链表的回文结构_牛客题霸_牛客网

160. 相交链表 - 力扣(LeetCode)

141. 环形链表 - 力扣(LeetCode)

142. 环形链表 II - 力扣(LeetCode)

138. 随机链表的复制 - 力扣(LeetCode)

题目有点多,都是经典链表的题,可以研究一下(有了基础内容的讲解,算法题可以尝试完成)

顺序表和链表的区别

打对钩的是优点,错误是缺点,可以了解一下,因为各有各的优势,在不同场景要用不同的数据结构

以上就是我对数据结构链表和顺序表的全部理解,以后会创作更多用心作品(目录有对应的模块,需要什么看什么)

感谢大家的支持!!!


http://www.ppmy.cn/embedded/156245.html

相关文章

c++面试题,请使用STL的std::remove_if算法删除std::vector<int>容器中大于5的数字

请使用STL的std::remove_if算法删除std::vector容器中大于5的数字 在C 中&#xff0c; std::remove_if 算法并不会真正从容器中删除元素&#xff0c; 而是将满足条件的元素移动到容器末尾&#xff0c;并返回一个指向新的逻辑结束位置的迭代器。 你需要使用容器的 erase 成员函…

激光雷达和相机早期融合

通过外参和内参的标定将激光雷达的点云投影到图像上。 • 传感器标定 首先需要对激光雷达和相机&#xff08;用于获取 2D 图像&#xff09;进行外参和内参标定。这是为了确定激光雷达坐标系和相机坐标系之间的转换关系&#xff0c;包括旋转和平移。通常采用棋盘格等标定工具&…

[CTF/网络安全] 攻防世界 Web_php_unserialize 解题详析

代码审计 这段代码首先定义了一个名为 Demo 的类&#xff0c;包含了一个私有变量 $file 和三个魔术方法 __construct()、__destruct() 和 __wakeup()。其中&#xff1a; __construce()方法用于初始化 $file 变量__destruce方法用于输出文件内容__wakeup() 方法检查当前对象的…

SQLmap 注入 -04-cookies

1: firefox 先下载cookies 插件: 点击" 附加组件管理器", 然后进去输入cookies, 搜索&#xff0c; 下面这个安装的是 cookie Quick manager 下面看一下&#xff1a; 2下面进行测试: 注意&#xff1a; PHPSESSID 后面是 下面是例子: 上面运行的结果: 好&#xff…

【HF设计模式】06-命令模式

声明&#xff1a;仅为个人学习总结&#xff0c;还请批判性查看&#xff0c;如有不同观点&#xff0c;欢迎交流。 摘要 《Head First设计模式》第6章笔记&#xff1a;结合示例应用和代码&#xff0c;介绍命令模式&#xff0c;包括遇到的问题、采用的解决方案、遵循的 OO 原则、…

100条Linux命令汇总

本文章为个人成长笔记之一&#xff0c;感谢您的阅览。 内容简介 文件和目录操作命令(14 个)查看文件及内容处理命令(14 个)文件压缩及解压缩命令(4个)信息显示命令(11个)用户管理命令(10个)基础网络操作命令(12个)进程管理相关命令(15个)其他常用命令(10个) 文件和目录操作命令…

AI新玩法:Flux.1图像生成结合内网穿透远程生图的解决方案

文章目录 前言1. 本地部署ComfyUI2. 下载 Flux.1 模型3. 下载CLIP模型4. 下载 VAE 模型5. 演示文生图6. 公网使用 Flux.1 大模型6.1 创建远程连接公网地址 7. 固定远程访问公网地址 前言 在这个AI技术日新月异的时代&#xff0c;图像生成模型已经成为了创意工作者和开发者手中…

总结6..

背包问题的解决过程 在解决问题之前&#xff0c;为描述方便&#xff0c;首先定义一些变量&#xff1a;Vi表示第 i 个物品的价值&#xff0c;Wi表示第 i 个物品的体积&#xff0c;定义V(i,j)&#xff1a;当前背包容量 j&#xff0c;前 i 个物品最佳组合对应的价值&#xff0c;同…