数学基础 --线性代数之理解矩阵乘法

embedded/2025/1/22 16:54:30/

理解矩阵乘法的解析

矩阵乘法(Matrix Multiplication)是线性代数中的核心操作之一。在数学、几何和工程实际中,它不仅是一种代数运算规则,还承载着丰富的几何和映射意义。本文将从多个角度深入解析矩阵乘法,帮助读者理解其本质及应用。


矩阵乘法的基础运算规则

1.1 行×列的点积

设矩阵 A A A m × n m \times n m×n 维度,矩阵 B B B n × p n \times p n×p 维度,则它们的乘积 C = A × B C = A \times B C=A×B 是一个 m × p m \times p m×p 的矩阵。

  • C C C 中的第 i i i 行第 j j j 列元素 c i j c_{ij} cij 的计算公式为:
    c i j = ∑ k = 1 n a i k b k j c_{ij} = \sum_{k=1}^n a_{ik}\, b_{kj} cij=k=1naikbkj
    A A A 的第 i i i 行向量与 B B B 的第 j j j 列向量做点积

1.2 示例计算


A = ( 1 2 3 4 5 6 ) , B = ( − 1 2 0 1 2 1 ) . A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ 0 & 1 \\ 2 & 1 \end{pmatrix}. A=(142536),B=102211.

  • A A A 的大小是 2 × 3 2 \times 3 2×3
  • B B B 的大小是 3 × 2 3 \times 2 3×2

乘积 C = A × B C = A \times B C=A×B 将是一个 2 × 2 2 \times 2 2×2 的矩阵。

计算 C C C 的第 ( 1 , 1 ) (1,1) (1,1) 元素 c 11 c_{11} c11
c 11 = ( 1 , 2 , 3 ) ⋅ ( − 1 , 0 , 2 ) = 1 × ( − 1 ) + 2 × 0 + 3 × 2 = − 1 + 0 + 6 = 5. c_{11} = (1,2,3) \cdot (-1,0,2) = 1 \times (-1) + 2 \times 0 + 3 \times 2 = -1 + 0 + 6 = 5. c11=(1,2,3)(1,0,2)=1×(1)+2×0+3×2=1+0+6=5.

类似地可以算出其余元素,最终得到:
C = ( 5 9 8 18 ) . C = \begin{pmatrix} 5 & 9 \\ 8 & 18 \end{pmatrix}. C=(58918).


几何视角:线性变换的复合

矩阵乘法可以理解为线性变换的组合

2.1 线性变换的定义

  • 矩阵 A A A 对一个列向量 x x x 的乘积 A x A x Ax,可以视为对向量 x x x 的某种线性变换,比如拉伸、旋转、剪切等。
  • 如果有另一个矩阵 B B B 对向量做线性变换,则先用 A A A,再用 B B B 的过程可以表示为 B ( A x ) B(Ax) B(Ax)
  • 这个组合变换可以用一个矩阵 C = B A C = B A C=BA 表示。

2.2 矩阵乘法与变换级联

因此,两个矩阵相乘实际上是两个线性变换的复合:
B × A ↔ T B ∘ T A , B \times A \quad \leftrightarrow \quad T_B \circ T_A, B×ATBTA,
其中「 ∘ \circ 」表示函数的组合:先执行 T A T_A TA,再执行 T B T_B TB

矩阵乘积的顺序反映了变换的执行顺序,这也是矩阵乘法不满足交换律的原因之一(即通常 A B ≠ B A AB \neq BA AB=BA)。


从行和列的视角理解

3.1 行向量视角

矩阵乘法的结果的某一行,可以看作前一个矩阵的那一行选取并线性组合另一个矩阵的对应列。

例如:
C = A × B , C = A \times B, C=A×B,
C C C 的第 i i i 行等于:
(第  i 行的  A ) × B . \text{(第 }i\text{ 行的 }A) \times B. ( i 行的 A)×B.

假设「第 i i i 行的 A A A」是向量 ( a i 1 , a i 2 , … , a i n ) (a_{i1}, a_{i2}, \dots, a_{in}) (ai1,ai2,,ain),它会将 B B B 的第 1 行加权 a i 1 a_{i1} ai1、第 2 行加权 a i 2 a_{i2} ai2、…、第 n n n 行加权 a i n a_{in} ain 后相加。

3.2 列向量视角

矩阵 B B B 可以被看作由其列向量 b 1 , b 2 , … , b p b_1, b_2, \dots, b_p b1,b2,,bp 构成。

  • 矩阵乘法 A B AB AB 的结果,可以理解为 A A A B B B 的每一个列向量进行线性变换后,将这些新向量拼成结果矩阵。
  • 即:
    A B = [ A b 1 A b 2 … A b p ] . AB = \bigl[A b_1 \quad A b_2 \quad \dots \quad A b_p\bigr]. AB=[Ab1Ab2Abp].

矩阵乘法的多重意义

4.1 几何意义:线性映射

矩阵乘法对应两个线性映射的复合操作,体现了几何变换的顺序性。

4.2 应用意义

矩阵乘法广泛应用于:

  1. 神经网络
    • 在深度学习的全连接层中,矩阵乘法用于线性组合输入特征,生成下一层的输出。
  2. 图像变换
    • 矩阵用于表示旋转、缩放、平移等操作,多个变换叠加可通过矩阵乘法实现。
  3. 马尔可夫链
    • 状态转移矩阵的多步转移可以通过矩阵幂次乘法实现。

矩阵乘法的定义为何是「行×列」?

矩阵乘法定义为「行向量与列向量的点积」,是为了满足以下性质:

  1. 复合线性变换的一一对应:矩阵乘法能表示线性映射的复合。
  2. 分配率与结合律:保证代数操作的完整性。
  3. 与向量运算兼容:保证行×列运算能与向量操作自然衔接。

总结

  • 运算层面:矩阵乘法是通过「行向量」与「列向量」的点积计算得到的。
  • 几何层面:它对应了线性变换的复合。
  • 行和列的视角:从行角度看是线性组合,从列角度看是逐列映射。
  • 应用层面:广泛应用于神经网络、图像处理、状态转移等领域。

一句话概括:

矩阵乘法既是一种代数运算规则,也是线性变换复合的几何抽象,连接了数值计算与线性代数的核心思想。


http://www.ppmy.cn/embedded/156098.html

相关文章

【计算机网络】传输层协议TCP与UDP

传输层 传输层位于OSI七层网络模型的第四层,主要负责端到端通信,可靠性保障(TCP),流量控制(TCP),拥塞控制(TCP),数据分段与分组,多路复用与解复用等,通过TCP与UDP协议实现…

深入探讨RAMS(区域大气建模系统)与机器学习的结合方法

在现代气象科学中,区域大气建模系统(Regional Atmospheric Modeling System,简称RAMS)与机器学习(Machine Learning,ML)的结合为提升天气预报的精度和效率提供了新的途径。本文将详细说明如何将…

5、原来可以这样理解C语言_数组(5)sizeof 计算数组元素个数

目录 5. sizeof 计算数组元素个数 5. sizeof 计算数组元素个数 在遍历数组的时候,我们经常想知道数组的元素个数,那C语⾔中有办法使⽤程序计算数组元素个数 吗? 答案是有的,可以使⽤sizeof。 sizeof 中C语⾔是⼀个关键字&#xff…

工业相机 SDK 二次开发-Halcon 插件

本文介绍了 Halcon 连接相机时插件的使用。通过本套插件可连接海康 的工业相机。 一. 环境配置 1. 拷贝动态库 在 用 户 安 装 MVS 目 录 下 按 照 如 下 路 径 Development\ThirdPartyPlatformAdapter 找到目录为 HalconHDevelop 的文 件夹,根据 Halcon 版本找到对…

《在ArkTS中实现模型的可视化调试和监控:探索与实践》

在当今人工智能与鸿蒙Next深度融合的时代,利用ArkTS开发高效智能应用成为开发者们关注的焦点。而模型的可视化调试和监控对于确保模型的准确性和性能至关重要,本文将深入探讨在ArkTS中实现这一目标的方法和实践。 ArkTS与模型开发基础 ArkTS作为一种基…

包装生产线监控与管理系统

在当今快速迭代的工业4.0时代,包装行业正经历着前所未有的变革。从传统的机械化生产到如今的智能化升级,每一步都凝聚着对效率、品质与可持续性的不懈追求。在这一背景下,HiWoo Scada平台以其创新的本地化监控系统,为包装生产线带…

C语言小任务——1000以内含有9的数字

步骤 第一步:分类 含有九的可能的情况: 个位有9,十位有9,百位有9,而根据组合数,我们可以得出,一共有7种情况,分别是 9##,#9#,##9, 99#,9#9,#…

AIP-123 资源类型

编号123原文链接AIP-123: Resource types状态批准创建日期2019-05-12更新日期2019-05-12 大多数API发布了用户可以创建、获取和操作的 资源 (主要是名词)。API可以合理的、自由的命名资源类型(在AIP要求的范围内),只要…