Elasticsearch:Jira 连接器教程第二部分 - 6 个优化技巧

embedded/2025/1/22 5:40:36/

作者:来自 Elastic Gustavo Llermaly

将 Jira 连接到 Elasticsearch 后,我们现在将回顾最佳实践以升级此部署。

在本系列的第一部分中,我们配置了 Jira 连接器并将对象索引到 Elasticsearch 中。在第二部分中,我们将回顾一些最佳实践和高级配置以升级连接器。这些实践是对当前文档的补充,将在索引阶段使用。

运行连接器只是第一步。当你想要索引大量数据时,每个细节都很重要,当你从 Jira 索引文档时,你可以使用许多优化点。

优化点

  1. 通过应用高级同步过滤器仅索引你需要的文档
  2. 仅索引你将使用的字段
  3. 根据你的需求优化映射
  4. 自动化文档级别安全性
  5. 卸载附件提取
  6. 监控连接器的日志

1. 通过应用高级同步过滤器仅索引你需要的文档

默认情况下,Jira 会发送所有项目、问题和附件。如果你只对其中一些感兴趣,或者例如只对 “In Progress - 正在进行” 的问题感兴趣,我们建议不要索引所有内容。

在将文档放入 Elasticsearch 之前,有三个实例可以过滤文档:

  1. 远程:我们可以使用原生 Jira 过滤器来获取我们需要的内容。这是最好的选择,你应该尽可能尝试使用此选项,因为这样,文档在进入 Elasticsearch 之前甚至不会从源中出来。我们将为此使用高级同步规则。
  2. 集成:如果源​​没有原生过滤器来提供我们需要的内容,我们仍然可以使用基本同步规则在集成级别进行过滤,然后再将其导入 Elasticsearch。
  3. 摄入管道:在索引数据之前处理数据的最后一个选项是使用 Elasticsearch 摄入管道(ingest pipeline)。通过使用 Painless 脚本,我们可以非常灵活地过滤或操作文档。这样做的缺点是数据已经离开源并通过连接器,因此可能会给系统带来沉重的负担并产生安全问题。

让我们快速回顾一下 Jira 问题:

GET bank/_search
{"_source": ["Issue.status.name", "Issue.summary"],"query": {"exists": {"field": "Issue.status.name"}}
}

注意:我们使用 “exists” 查询仅返回具有我们过滤的字段的文档。

你可以看到 “To Do” 中有很多我们不需要的问题:

{"took": 3,"timed_out": false,"_shards": {"total": 2,"successful": 2,"skipped": 0,"failed": 0},"hits": {"total": {"value": 6,"relation": "eq"},"max_score": 1,"hits": [{"_index": "bank","_id": "Marketing Mars-MM-1","_score": 1,"_source": {"Issue": {"summary": "Conquer Mars","status": {"name": "To Do"}}}},{"_index": "bank","_id": "Marketing Mars-MM-3","_score": 1,"_source": {"Issue": {"summary": "Conquering Earth","status": {"name": "In Progress"}}}},{"_index": "bank","_id": "Marketing Mars-MM-2","_score": 1,"_source": {"Issue": {"summary": "Conquer the moon","status": {"name": "To Do"}}}},{"_index": "bank","_id": "Galactic Banking Project-GBP-3","_score": 1,"_source": {"Issue": {"summary": "Intergalactic Security and Compliance","status": {"name": "In Progress"}}}},{"_index": "bank","_id": "Galactic Banking Project-GBP-2","_score": 1,"_source": {"Issue": {"summary": "Bank Application Frontend","status": {"name": "To Do"}}}},{"_index": "bank","_id": "Galactic Banking Project-GBP-1","_score": 1,"_source": {"Issue": {"summary": "Development of API for International Transfers","status": {"name": "To Do"}}}}]}
}

为了仅获取 “In Progress” 的问题,我们将使用 JQL 查询(Jira 查询语言)创建高级同步规则:

转到连接器并单击 sync rules 选项卡,然后单击 Draft Rules。进入后,转到 Advanced Sync Rules 并添加以下内容:

  [{"query": "status IN ('In Progress')"}]

应用规则后,运行 Full Content Sync

此规则将排除所有非 “In Progress” 的问题。你可以通过再次运行查询来检查:

GET bank/_search
{"_source": ["Issue.status.name", "Issue.summary"],"query": {"exists": {"field": "Issue.status.name"}}
}

以下是新的回应:

{"took": 2,"timed_out": false,"_shards": {"total": 2,"successful": 2,"skipped": 0,"failed": 0},"hits": {"total": {"value": 2,"relation": "eq"},"max_score": 1,"hits": [{"_index": "bank","_id": "Marketing Mars-MM-3","_score": 1,"_source": {"Issue": {"summary": "Conquering Earth","status": {"name": "In Progress"}}}},{"_index": "bank","_id": "Galactic Banking Project-GBP-3","_score": 1,"_source": {"Issue": {"summary": "Intergalactic Security and Compliance","status": {"name": "In Progress"}}}}]}
}

2. 仅索引你将使用的字段

现在我们只有我们想要的文档,你可以看到我们仍然会得到很多我们不需要的字段。我们可以在运行查询时使用 _source 隐藏它们,但最好的选择是不索引它们。

为此,我们将使用摄取管道(ingest pipeline)。我们可以创建一个删除所有我们不会使用的字段的管道。假设我们只想要来自问题的以下信息:

  • Assignee
  • Title
  • Status

我们可以创建一个新的摄取管道,仅使用摄取管道的 Content UI 获取这些字段:

单击复 Copy and customize,然后修改名为 index-name@custom 的管道,该管道应该刚刚创建且为空。我们可以使用 Kibana DevTools 控制台执行此操作,运行以下命令:

PUT _ingest/pipeline/bank@custom
{"description": "Only keep needed fields for jira issues and move them to root","processors": [{"remove": {"keep": ["Issue.assignee.displayName","Issue.summary","Issue.status.name"],"ignore_missing": true}},{"rename": {"field": "Issue.assignee.displayName","target_field": "assignee","ignore_missing": true}},{"rename": {"field": "Issue.summary","target_field": "summary","ignore_missing": true}},{"rename": {"field": "Issue.status.name","target_field": "status","ignore_missing": true}},{"remove": {"field": "Issue"}}]
}

让我们删除不需要的字段,并将需要的字段移至文档的根目录。

带有 keep 参数的 remove 处理器将从文档中删除除 keep 数组中的字段之外的所有字段。

我们可以通过运行模拟来检查这是否有效。从索引中添加其中一个文档的内容:

POST /_ingest/pipeline/bank@custom/_simulate
{"docs": [{"_index": "bank","_id": "Galactic Banking Project-GBP-3","_score": 1,"_source": {"Type": "Epic","Custom_Fields": {"Satisfaction": null,"Approvals": null,"Change reason": null,"Epic Link": null,"Actual end": null,"Design": null,"Campaign assets": null,"Story point estimate": null,"Approver groups": null,"[CHART] Date of First Response": null,"Request Type": null,"Campaign goals": null,"Project overview key": null,"Related projects": null,"Campaign type": null,"Impact": null,"Request participants": [],"Locked forms": null,"Time to first response": null,"Work category": null,"Audience": null,"Open forms": null,"Details": null,"Sprint": null,"Stakeholders": null,"Marketing asset type": null,"Submitted forms": null,"Start date": null,"Actual start": null,"Category": null,"Change risk": null,"Target start": null,"Issue color": "purple","Parent Link": {"hasEpicLinkFieldDependency": false,"showField": false,"nonEditableReason": {"reason": "EPIC_LINK_SHOULD_BE_USED","message": "To set an epic as the parent, use the epic link instead"}},"Format": null,"Target end": null,"Approvers": null,"Team": null,"Change type": null,"Satisfaction date": null,"Request language": null,"Amount": null,"Rank": "0|i0001b:","Affected services": null,"Type": null,"Time to resolution": null,"Total forms": null,"[CHART] Time in Status": null,"Organizations": [],"Flagged": null,"Project overview status": null},"Issue": {"statuscategorychangedate": "2024-11-07T16:59:54.786-0300","issuetype": {"avatarId": 10307,"hierarchyLevel": 1,"name": "Epic","self": "https://tomasmurua.atlassian.net/rest/api/2/issuetype/10008","description": "Epics track collections of related bugs, stories, and tasks.","entityId": "f5637521-ec75-48b8-a1b8-de18520807ca","id": "10008","iconUrl": "https://tomasmurua.atlassian.net/rest/api/2/universal_avatar/view/type/issuetype/avatar/10307?size=medium","subtask": false},"components": [],"timespent": null,"timeoriginalestimate": null,"project": {"simplified": true,"avatarUrls": {"48x48": "https://tomasmurua.atlassian.net/rest/api/2/universal_avatar/view/type/project/avatar/10415","24x24": "https://tomasmurua.atlassian.net/rest/api/2/universal_avatar/view/type/project/avatar/10415?size=small","16x16": "https://tomasmurua.atlassian.net/rest/api/2/universal_avatar/view/type/project/avatar/10415?size=xsmall","32x32": "https://tomasmurua.atlassian.net/rest/api/2/universal_avatar/view/type/project/avatar/10415?size=medium"},"name": "Galactic Banking Project","self": "https://tomasmurua.atlassian.net/rest/api/2/project/10001","id": "10001","projectTypeKey": "software","key": "GBP"},"description": null,"fixVersions": [],"aggregatetimespent": null,"resolution": null,"timetracking": {},"security": null,"aggregatetimeestimate": null,"attachment": [],"resolutiondate": null,"workratio": -1,"summary": "Intergalactic Security and Compliance","watches": {"self": "https://tomasmurua.atlassian.net/rest/api/2/issue/GBP-3/watchers","isWatching": true,"watchCount": 1},"issuerestriction": {"issuerestrictions": {},"shouldDisplay": true},"lastViewed": "2024-11-08T02:04:25.247-0300","creator": {"accountId": "712020:88983800-6c97-469a-9451-79c2dd3732b5","emailAddress": "contornan_cliche.0y@icloud.com","avatarUrls": {"48x48": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","24x24": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","16x16": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","32x32": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png"},"displayName": "Tomas Murua","accountType": "atlassian","self": "https://tomasmurua.atlassian.net/rest/api/2/user?accountId=712020%3A88983800-6c97-469a-9451-79c2dd3732b5","active": true,"timeZone": "Chile/Continental"},"subtasks": [],"created": "2024-10-29T15:52:40.306-0300","reporter": {"accountId": "712020:88983800-6c97-469a-9451-79c2dd3732b5","emailAddress": "contornan_cliche.0y@icloud.com","avatarUrls": {"48x48": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","24x24": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","16x16": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","32x32": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png"},"displayName": "Tomas Murua","accountType": "atlassian","self": "https://tomasmurua.atlassian.net/rest/api/2/user?accountId=712020%3A88983800-6c97-469a-9451-79c2dd3732b5","active": true,"timeZone": "Chile/Continental"},"aggregateprogress": {"total": 0,"progress": 0},"priority": {"name": "Medium","self": "https://tomasmurua.atlassian.net/rest/api/2/priority/3","iconUrl": "https://tomasmurua.atlassian.net/images/icons/priorities/medium.svg","id": "3"},"labels": [],"environment": null,"timeestimate": null,"aggregatetimeoriginalestimate": null,"versions": [],"duedate": null,"progress": {"total": 0,"progress": 0},"issuelinks": [],"votes": {"hasVoted": false,"self": "https://tomasmurua.atlassian.net/rest/api/2/issue/GBP-3/votes","votes": 0},"comment": {"total": 0,"comments": [],"maxResults": 0,"self": "https://tomasmurua.atlassian.net/rest/api/2/issue/10008/comment","startAt": 0},"assignee": {"accountId": "712020:88983800-6c97-469a-9451-79c2dd3732b5","emailAddress": "contornan_cliche.0y@icloud.com","avatarUrls": {"48x48": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","24x24": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","16x16": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png","32x32": "https://secure.gravatar.com/avatar/f098101294d1a0da282bb2388df8c257?d=https%3A%2F%2Favatar-management--avatars.us-west-2.prod.public.atl-paas.net%2Finitials%2FTM-3.png"},"displayName": "Tomas Murua","accountType": "atlassian","self": "https://tomasmurua.atlassian.net/rest/api/2/user?accountId=712020%3A88983800-6c97-469a-9451-79c2dd3732b5","active": true,"timeZone": "Chile/Continental"},"worklog": {"total": 0,"maxResults": 20,"startAt": 0,"worklogs": []},"updated": "2024-11-07T16:59:54.786-0300","status": {"name": "In Progress","self": "https://tomasmurua.atlassian.net/rest/api/2/status/10004","description": "","iconUrl": "https://tomasmurua.atlassian.net/","id": "10004","statusCategory": {"colorName": "yellow","name": "In Progress","self": "https://tomasmurua.atlassian.net/rest/api/2/statuscategory/4","id": 4,"key": "indeterminate"}}},"id": "Galactic Banking Project-GBP-3","_timestamp": "2024-11-07T16:59:54.786-0300","Key": "GBP-3","_allow_access_control": ["account_id:63c04b092341bff4fff6e0cb","account_id:712020:88983800-6c97-469a-9451-79c2dd3732b5","name:Gustavo","name:Tomas-Murua"]}}]
}

响应将是:

{"docs": [{"doc": {"_index": "bank","_version": "-3","_id": "Galactic Banking Project-GBP-3","_source": {"summary": "Intergalactic Security and Compliance","assignee": "Tomas Murua","status": "In Progress"},"_ingest": {"timestamp": "2024-11-10T06:58:25.494057572Z"}}}]
}

这看起来好多了!现在,让我们运行 full content sync 来应用更改。

3. 根据你的需求优化映射

文档很干净。但是,我们可以进一步优化。我们可以进入  “it depends”  的领域。有些映射可以适用于你的用例,而其他映射则不行。找出答案的最佳方法是进行实验。

假设我们测试并得到了这个映射设计:

  • assignee:全文搜索和过滤器
  • summary:全文搜索
  • status:过滤器和排序

默认情况下,连接器将使用 dynamic_templates 创建映射,这些映射将配置所有文本字段以进行全文搜索、过滤和排序,这是一个坚实的基础,但如果我们知道我们想要用我们的字段做什么,它可以进行优化。

这是规则:

{"all_text_fields": {"match_mapping_type": "string","mapping": {"analyzer": "iq_text_base","fields": {"delimiter": {"analyzer": "iq_text_delimiter","type": "text","index_options": "freqs"},"joined": {"search_analyzer": "q_text_bigram","analyzer": "i_text_bigram","type": "text","index_options": "freqs"},"prefix": {"search_analyzer": "q_prefix","analyzer": "i_prefix","type": "text","index_options": "docs"},"enum": {"ignore_above": 2048,"type": "keyword"},"stem": {"analyzer": "iq_text_stem","type": "text"}}}}
}

让我们为所有文本字段创建用于不同目的的不同子字段。你可以在文档中找到有关分析器的其他信息。

要使用这些映射,你必须:

  1. 在创建连接器之前创建索引
  2. 创建连接器时,选择该索引而不是创建新索引
  3. 创建摄取管道以获取所需的字段
  4. 运行 Full Content Sync*

*Full Content Sync 会将所有文档发送到 Elasticsearch。Incremental Sync 只会将上次增量或完整内容同步后更改的文档发送到 Elasticsearch。这两种方法都将从数据源获取所有数据。

我们的优化映射如下:

PUT bank-optimal
{"mappings": {"properties": {"assignee": {"type": "text","fields": {"delimiter": {"type": "text","index_options": "freqs","analyzer": "iq_text_delimiter"},"enum": {"type": "keyword","ignore_above": 2048},"joined": {"type": "text","index_options": "freqs","analyzer": "i_text_bigram","search_analyzer": "q_text_bigram"},"prefix": {"type": "text","index_options": "docs","analyzer": "i_prefix","search_analyzer": "q_prefix"},"stem": {"type": "text","analyzer": "iq_text_stem"}},"analyzer": "iq_text_base"},"summary": {"type": "text","fields": {"delimiter": {"type": "text","index_options": "freqs","analyzer": "iq_text_delimiter"},"joined": {"type": "text","index_options": "freqs","analyzer": "i_text_bigram","search_analyzer": "q_text_bigram"},"prefix": {"type": "text","index_options": "docs","analyzer": "i_prefix","search_analyzer": "q_prefix"},"stem": {"type": "text","analyzer": "iq_text_stem"}},"analyzer": "iq_text_base"},"status": {"type": "keyword"}}}
}

对于 assignee,我们保留了原有的映射,因为我们希望此字段针对搜索和过滤器进行优化。对于 summary,我们删除了 “enum” 关键字字段,因为我们不打算过滤摘要。我们将 status 映射为关键字,因为我们只打算过滤该字段。

注意:如果你不确定如何使用字段,基线分析器应该没问题。

4. 自动化文档级安全性

在第一部分中,我们学习了使用文档级安全性 (Document Level Security - DLS) 为用户手动创建 API 密钥并根据该密钥限制访问权限。但是,如果你想在每次用户访问我们的网站时自动创建具有权限的 API 密钥,则需要创建一个脚本来接收请求,使用用户 ID 生成 API 密钥,然后使用它在 Elasticsearch 中搜索。

这是 Python 中的参考文件:

import os
import requests
class ElasticsearchKeyGenerator:def __init__(self):self.es_url = "https://xxxxxxx.es.us-central1.gcp.cloud.es.io" # Your Elasticsearch URLself.es_user = "" # Your Elasticsearch Userself.es_password = "" # Your Elasticsearch password# Basic configuration for requestsself.auth = (self.es_user, self.es_password)self.headers = {'Content-Type': 'application/json'}def create_api_key(self, user_id, index, expiration='1d', metadata=None):"""Create an Elasticsearch API key for a single index with user-specific filters.Args:user_id (str): User identifier on the source systemindex (str): Index nameexpiration (str): Key expiration time (default: '1d')metadata (dict): Additional metadata for the API keyReturns:str: Encoded API key if successful, None if failed"""try:# Get user-specific ACL filtersacl_index = f'.search-acl-filter-{index}'response = requests.get(f'{self.es_url}/{acl_index}/_doc/{user_id}',auth=self.auth,headers=self.headers)response.raise_for_status()# Build the queryquery = {'bool': {'must': [{'term': {'_index': index}},response.json()['_source']['query']]}}# Set default metadata if none providedif not metadata:metadata = {'created_by': 'create-api-key'}# Prepare API key request bodyapi_key_body = {'name': user_id,'expiration': expiration,'role_descriptors': {f'jira-role': {'index': [{'names': [index],'privileges': ['read'],'query': query}]}},'metadata': metadata}print(api_key_body)# Create API keyapi_key_response = requests.post(f'{self.es_url}/_security/api_key',json=api_key_body,auth=self.auth,headers=self.headers)api_key_response.raise_for_status()return api_key_response.json()['encoded']except requests.exceptions.RequestException as e:print(f"Error creating API key: {str(e)}")return None# Example usage
if __name__ == "__main__":key_generator = ElasticsearchKeyGenerator()encoded_key = key_generator.create_api_key(user_id="63c04b092341bff4fff6e0cb", # User id on Jiraindex="bank",expiration="1d",metadata={"application": "my-search-app","namespace": "dev","foo": "bar"})if encoded_key:print(f"Generated API key: {encoded_key}")else:print("Failed to generate API key")

你可以在每个 API 请求上调用此 create_api_key 函数来生成 API 密钥,用户可以在后续请求中使用该密钥查询 Elasticsearch。你可以设置到期时间,还可以设置任意元数据,以防你想要注册有关用户或生成密钥的 API 的一些信息。

5. 卸载附件提取

对于内容提取,例如从 PDF 和 Powerpoint 文件中提取文本,Elastic 提供了一种开箱即用的服务,该服务运行良好,但有大小限制。

默认情况下,本机连接器的提取服务支持每个附件最大 10MB。如果你有更大的附件,例如里面有大图像的 PDF,或者你想要托管提取服务,Elastic 提供了一个工具,可让你部署自己的提取服务。

此选项仅与连接器客户端兼容,因此如果你使用的是本机连接器,则需要将其转换为连接器客户端并将其托管在你自己的基础架构中。

请按照以下步骤操作:

a. 配置自定义提取服务并使用 Docker 运行

docker run \-p 8090:8090 \-it \--name extraction-service \docker.elastic.co/enterprise-search/data-extraction-service:$EXTRACTION_SERVICE_VERSION

EXTRACTION_SERVICE_VERSION 你应该使用 Elasticsearch 8.15 的 0.3.x。

b. 配置 yaml con 提取服务自定义并运行

转到连接器客户端并将以下内容添加到 config.yml 文件以使用提取服务:

extraction_service:host: http://localhost:8090

c. 按照步骤运行连接器客户端

配置完成后,你可以使用要使用的连接器运行连接器客户端。

docker run \
-v "</absolute/path/to>/connectors-config:/config" \ # NOTE: change absolute path to match where config.yml is located on your machine
--tty \
--rm \
docker.elastic.co/enterprise-search/elastic-connectors:{version}.0 \
/app/bin/elastic-ingest \
-c /config/config.yml # Path to your configuration file in the container

你可以参考文档中的完整流程。

6. 监控连接器的日志

在出现问题时,查看连接器的日志非常重要,Elastic 提供了开箱即用的功能。

第一步是在集群中激活日志记录。建议将日志发送到其他集群(监控部署),但在开发环境中,你也可以将日志发送到索引文档的同一集群。

默认情况下,连接器会将日志发送到 elastic-cloud-logs-8 索引。如果你使用的是 Cloud,则可以在新的 Logs Explorer 中检查日志:

结论

在本文中,我们了解了在生产环境中使用连接器时需要考虑的不同策略。优化资源、自动化安全性和集群监控是正确运行大型系统的关键机制。

想要获得 Elastic 认证?了解下一期 Elasticsearch 工程师培训的时间!

Elasticsearch 包含许多新功能,可帮助你为你的用例构建最佳搜索解决方案。深入了解我们的示例笔记本以了解更多信息,开始免费云试用,或立即在你的本地机器上试用 Elastic。

原文:Jira connector tutorial part II: 6 optimization tips - Elasticsearch Labs


http://www.ppmy.cn/embedded/155975.html

相关文章

PIL——抗锯齿修改分辨率

1. PIL 中的抗锯齿与齿轮图像的平滑处理 如果用户的问题是希望使用 PIL 处理齿轮图像&#xff08;例如绘制或缩放齿轮图像&#xff09;&#xff0c;并避免锯齿问题&#xff0c;可以参考以下方法&#xff1a; &#xff08;1&#xff09;使用 Image.ANTIALIAS 进行抗锯齿处理 …

PostgreSQL插件pg_repack介绍和简单使用【2】

文章目录 pg_repack用法介绍OPTIONS指定选项重组选项连接选项通用选项 pg_repack用法介绍 OPTIONS指定选项 -a, --all 重新打包所有数据库-t, --tableTABLE 仅打包指定表-I, --parent-tableTABLE 重新打包特定的父表及其继承表-c, --schemaSCHEMA 仅打包指定模式内的表-s, --…

Flink在流处理中,为什么还会有窗口的概念呢

窗口操作在流处理中看似有些反直觉&#xff0c;因为流处理通常处理的是无限数据流&#xff0c;数据不断流入而没有明确的结束点。然而&#xff0c;窗口操作却是流处理的一个核心概念&#xff0c;特别是在需要对流数据进行 聚合、统计、处理 等操作时&#xff0c;窗口的概念就显…

22. C语言 输入与输出详解

本章目录: 前言1. 输入输出的基础概念1.1 标准输入输出流1.2 输入输出函数 2. 格式化输出与输入2.1 使用 printf() 进行输出示例 1: 输出字符串示例 2: 输出整数示例 3: 输出浮点数 2.2 使用 scanf() 进行输入示例 4: 读取整数和字符改进方案&#xff1a;使用getchar()清理缓冲…

“大模型横扫千军”背后的大数据挖掘--浅谈MapReduce

文章目录 O 背景知识1 数据挖掘2 邦费罗尼原则3 TF.IDF4 哈希函数5 分布式文件系统 一、MapReduce基本介绍1. Map 任务2. 按键分组3. Reduce 任务4. 节点失效处理5.小测验&#xff1a;在一个大型语料库上有100个map任务和若干reduce任务&#xff1a; 二、基于MapReduce的基本运…

2. CSS 中的单位

CSS 中的单位 CSS 新单位&#xff1a;vmin 和 vmax vmin vmin 表示相对于视口宽度和高度中较小者的百分比。 vmax vmax 表示相对于视口宽度和高度中较大者的百分比。 例如&#xff0c;如果视口的宽度为 1000px&#xff0c;高度为 800px&#xff0c;那么 1vmax 就等于 10p…

GRE协议(附华三实验)

概述 通用路由封装协议&#xff0c;可以对某些网络层协议&#xff08;如IPX、AppleTalk等&#xff09;的数据报文进行封装&#xff0c;使这些被封装的数据报文能够在网络中传输&#xff0c;是一种三层协议&#xff0c;个人认为这是最简单的VPN技术 GRE提供了将一种协议的报文…

SQL-leetcode—1084. 销售分析 III

1084. 销售分析 III 表&#xff1a; Product --------------------- | Column Name | Type | --------------------- | product_id | int | | product_name | varchar | | unit_price | int | --------------------- product_id 是该表的主键&#xff08;具有唯一值的列&…