基于本地消息表实现分布式事务

embedded/2025/1/20 12:42:38/

假设我们有一个电商系统,包含订单服务和库存服务。当用户下单时,需要在订单服务中创建订单,同时在库存服务中扣减库存。这是一个典型的分布式事务场景,我们需要保证这两个操作要么都成功,要么都失败,以保证数据的最终一致性。

项目结构:

  1. 订单服务(Order Service)
  2. 库存服务(Inventory Service)
  3. 本地消息表(Local Message Table)
  4. 消息恢复系统(Message Recovery System)

核心思想:
使用本地消息表来实现分布式事务。在订单服务中,我们将创建订单和发送消息这两个操作放在一个本地事务中。如果本地事务成功,则订单创建成功,消息也被保存到本地消息表中。然后通过定时任务或消息队列来发送消息到库存服务,实现库存扣减。如果在这个过程中出现任何异常,我们可以通过重试机制来保证最终一致性。

下面是详细的代码实现:

订单服务(Order Service)

@Service  
@Transactional  
public class OrderService {  @Autowired  private OrderRepository orderRepository;  @Autowired  private LocalMessageRepository localMessageRepository;  @Autowired  private KafkaTemplate<String, String> kafkaTemplate;  public void createOrder(Order order) {  // 开启本地事务  TransactionStatus txStatus = transactionManager.getTransaction(new DefaultTransactionDefinition());  try {  // 1. 保存订单  orderRepository.save(order);  // 2. 创建本地消息  LocalMessage message = new LocalMessage();  message.setMessageId(UUID.randomUUID().toString());  message.setMessage(JSON.toJSONString(order));  message.setStatus("NEW");  localMessageRepository.save(message);  // 3. 提交事务  transactionManager.commit(txStatus);  // 4. 发送消息到Kafka  kafkaTemplate.send("inventory-topic", message.getMessageId(), message.getMessage());  } catch (Exception e) {  // 回滚事务  transactionManager.rollback(txStatus);  throw new RuntimeException("Create order failed", e);  }  }  
}

库存服务(Inventory Service)

@Service  
public class InventoryService {  @Autowired  private InventoryRepository inventoryRepository;  @KafkaListener(topics = "inventory-topic")  public void handleOrderCreation(ConsumerRecord<String, String> record) {  String messageId = record.key();  Order order = JSON.parseObject(record.value(), Order.class);  try {  // 扣减库存  inventoryRepository.decreaseStock(order.getProductId(), order.getQuantity());  // 确认消息处理成功  kafkaTemplate.send("inventory-result-topic", messageId, "SUCCESS");  } catch (Exception e) {  // 消息处理失败,发送失败消息  kafkaTemplate.send("inventory-result-topic", messageId, "FAILED");  }  }  
}

本地消息表(Local Message Table)

@Entity  
@Table(name = "local_message")  
public class LocalMessage {  @Id  private String messageId;  private String message;  private String status; // NEW, SENT, CONFIRMED  private Date createTime;  private Date updateTime;  // Getters and setters  
}

消息恢复系统(Message Recovery System)

@Component  
public class MessageRecoverySystem {  @Autowired  private LocalMessageRepository localMessageRepository;  @Autowired  private KafkaTemplate<String, String> kafkaTemplate;  @Scheduled(fixedRate = 60000) // 每分钟执行一次  public void recoverFailedMessages() {  List<LocalMessage> failedMessages = localMessageRepository.findByStatusAndCreateTimeBefore("NEW", new Date(System.currentTimeMillis() - 300000)); // 5分钟前的消息  for (LocalMessage message : failedMessages) {  try {  kafkaTemplate.send("inventory-topic", message.getMessageId(), message.getMessage());  message.setStatus("SENT");  localMessageRepository.save(message);  } catch (Exception e) {  // 记录日志,等待下次重试  log.error("Failed to recover message: " + message.getMessageId(), e);  }  }  }  @KafkaListener(topics = "inventory-result-topic")  public void handleInventoryResult(ConsumerRecord<String, String> record) {  String messageId = record.key();  String result = record.value();  LocalMessage message = localMessageRepository.findById(messageId).orElse(null);  if (message != null) {  if ("SUCCESS".equals(result)) {  message.setStatus("CONFIRMED");  } else {  message.setStatus("FAILED");  }  localMessageRepository.save(message);  }  }  
}

代码说明:

  1. 订单服务:
    • 在一个本地事务中完成订单创建和本地消息保存。
    • 事务成功后,立即发送消息到Kafka。
  2. 库存服务:
    • 监听Kafka消息,处理库存扣减。
    • 处理结果(成功或失败)通过Kafka反馈给订单服务。
  3. 本地消息表:
    • 存储待发送的消息,包括消息ID、内容、状态等信息。
  4. 消息恢复系统:
    • 定期检查本地消息表,重新发送失败的消息。
    • 监听库存服务的处理结果,更新本地消息状态。

项目亮点:

  1. 高可用性: 即使在网络故障或服务宕机的情况下,也能保证消息最终被成功处理。
  2. 数据一致性: 通过本地事务保证订单创建和消息发送的原子性,再通过消息重试机制保证最终一致性。
  3. 解耦性: 订单服务和库存服务通过消息进行异步通信,降低了系统耦合度。
  4. 可靠性: 使用本地消息表作为消息队列的可靠存储,避免了消息丢失的风险。
  5. 扩展性: 该方案易于扩展,可以方便地增加新的微服务而不影响现有服务。
  6. 性能: 采用异步处理方式,提高了系统的整体吞吐量。

通过这种方式,我们实现了在分布式系统中保证数据最终一致性的目标,同时保持了系统的高可用性和可扩展性。这种方案特别适用于对实时性要求不是特别高,但对数据一致性有较高要求的业务场景。


系列文章

  1. IT Governance Framework:IT治理框架
  2. 12306亿级流量架构分析(史上最全)
  3. 京东内部Redis性能优化最佳实践
  4. 金融级多数据中心灾备互联
  5. TOGAF业务架构-CSDN博客
  6. 如何建设金融数据中心-CSDN博客

资料下载和预览地址:

  • 链接: https://pan.baidu.com/s/1LFyFlsIHCv46DBQRfMGP9A 提取码: kx6b 


http://www.ppmy.cn/embedded/155489.html

相关文章

基于Springboot实现旅游网站系统开发

项目介绍 在介绍文章之前呢&#xff0c;小伙伴们需要掌握关于咱们前后端知识点&#xff0c;我整理了几个课程&#xff0c;可以去学习&#xff1a; 课程1-java和vue前后端分离项目实战 课程2-HTML5入门级开发 课程3-vue入门级开发教程 课程4-CSS入门级开发 里边的老师也很敬业&…

面试-业务逻辑2

应用 给定2个数组a、b&#xff0c;若a[i] b[j]&#xff0c;则记(i,j)为一个二元数组&#xff0c;求具体的二元数组及其个数。 实现 a input("请输入数组a的元素个数&#xff1a;") # print(a) a_list list(map(int, input("请输入数组a的元素&#xff0c;…

25/1/15 嵌入式笔记 初学STM32F108

GPIO初始化函数 GPIO_Ini&#xff1a;初始化GPIO引脚的模式&#xff0c;速度和引脚号 GPIO_Init(GPIOA, &GPIO_InitStruct); // 初始化GPIOA的引脚0 GPIO输出控制函数 GPIO_SetBits&#xff1a;将指定的GPIO引脚设置为高电平 GPIO_SetBits(GPIOA, GPIO_Pin_0); // 将GPIO…

2025年1月19日(振动控制研究历史)

振动控制研究的历史可以追溯到19世纪末&#xff0c;随着工程和物理学的快速发展&#xff0c;特别是在机械、土木和航空工程领域。以下是振动控制研究历史的一些关键节点&#xff1a; 1. 早期阶段 (19世纪末 - 20世纪初) 在19世纪末&#xff0c;工程师开始注意到机械和建筑物的…

MyBatis动态SQL标签的案例

1. 使用<if>进行条件查询 假设我们有一个用户表users&#xff0c;包含字段id, name, age。我们要根据名字和年龄来查找用户&#xff0c;但这两个条件都是可选的。 <select id"findUsers" parameterType"map" resultType"User">SEL…

今天你学C++了吗?——C++中的STL

♥♥♥~~~~~~欢迎光临知星小度博客空间~~~~~~♥♥♥ ♥♥♥零星地变得优秀~也能拼凑出星河~♥♥♥ ♥♥♥我们一起努力成为更好的自己~♥♥♥ ♥♥♥如果这一篇博客对你有帮助~别忘了点赞分享哦~♥♥♥ ♥♥♥如果有什么问题可以评论区留言或者私信我哦~♥♥♥ ✨✨✨✨✨✨ 个…

嵌入式知识点总结(一)-C/C++关键字

针对于嵌入式软件杂乱的知识点总结起来&#xff0c;提供给读者学习复习对下述内容的强化。 目录 1.C语言宏中"#“和"##"的用法 1.1.(#)字符串化操作符 1.2.(##)符号连接操作符 2.关键字volatile有什么含意?并举出三个不同的例子? 2.1.并行设备的硬件寄存…

JavaScript 代码规范

JavaScript 代码规范 1. 引言 JavaScript 是一种广泛使用的编程语言,尤其在网页开发中占据重要地位。为了确保代码的质量、可读性和可维护性,遵循一套统一的代码规范至关重要。本规范旨在为 JavaScript 开发者提供一个清晰、一致的编码标准,以促进团队合作和代码共享。 2…