tokenizer、tokenizer.encode、tokenizer.encode_plus比较

embedded/2025/1/1 16:03:03/

一、概念

        在我们使用Transformers库进行自然语言处理任务建模的过程中,基本离不开Tokenizer类。我们需要这些Tokenizer类来帮助我们加载预训练模型的分词模块,并将文本转化为预训练模型可接受的输入格式。

        而在实际建模的实践中,我们参考优秀的开源代码,时常会见到对Tokenizer类的不同应用方式和场景,例如实例化某个Tokenizer类并调用.tokenize()方法,又或者调用.encode()方法、.encode_plus()方法。这里,我们对这些方法的具体应用场景进行说明。

二、比较

        Transformers中几乎所有的Tokenizer类都继承了同一个超类,即PreTrainedTokenizer。下面我们以BertTokenizer为例,对以下四个通用的类方法的作用分别进行讲解。

1、tokenizer(input_texts)/tokenizer.encode_plus(input_texts)

        对于输入文本,我们可以直接使用tokenizer(input_texts, padding=True, truncation=True, return_tensors="pt")或者tokenizer.encode_plus(input_texts, padding=True, truncation=True, return_tensors="pt")对文本进行编码,二者几乎等价。该方法返回一个字典,分别包含“input_ids”、“token_type_ids”和“attention_mask”三个键以及对应的取值。我们可以设置return_tensors='pt'来让这些值都是tensor类型,便于输入AutoModel中。

        参数方面,我们需要关注的主要参数如下:

  • padding:设置为True或者longest则填充到批次中的最长序列(如果只提供单个序列,则不进行填充);设置为max_length则填充到用参数max_length指定的最大长度,或者如果未提供该参数,则填充到模型可接受的最大输入长度;设置为False或者do_not_pad则不进行填充(即可以输出一个包含不同长度序列的批次),默认为此设置。
  • truncation:设置为True或longest_first则截断到用参数max_length指定的最大长度,或者如果未提供该参数,则截断到模型可接受的最大输入长度;设置为False或do_not_truncate(默认值)则不截断。
  • max_length:如果未设置或设置为None,在截断/填充参数需要最大长度时,将使用预定义的模型最大长度。
  • return_tensors:默认None,如果设置了该值,将返回张量而不是Python整数列表。可接受的值有“tf”(返回 TensorFlow 的 tf.constant 对象)、“pt”(返回 PyTorch 的 torch.Tensor 对象)、“np”(返回 Numpy 的 np.ndarray 对象)。
python">from transformers import BertTokenizertext = 'we are learning python, which is one of the most popular programming languages in the world.'
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
outputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
# outputs = tokenizer.encode_plus(text, padding=True, truncation=True, return_tensors="pt")
for key in outputs.keys():print(key, outputs[key])

e675022fc8fa44398e85d879ae158b3a.png

2、tokenizer.tokenize(input_texts)

        tokenizer.tokenize(input_texts)仅对输入的文本进行分词,返回的是列表类型,包含的对每个输入句子的Word Piece级分词结果。

python">from transformers import BertTokenizertext = 'we are learning python, which is one of the most popular programming languages in the world.'
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
outputs = tokenizer.tokenize(text)
print(outputs)

        这里再重温一下Word Piece分词。预训练模型的词典固然庞大,但是我们无法无限扩大词典的规模,这样很低效。而且,很多单词的词根是相同的,这意味着我们通过使用几个词根的组合,就可以表示多个单词从而提高存储效率,这就有了Word Piece分词。

        举一个简单的例子,假设有单词“try”、“trying”、“learn”、“learning”,如果全部存储原词则需要存储4个词,而如果我们把“ing”拆出来,我们会发现只需要存储3个Token(即“learn”、“try”和“#ing”),且通过这三个Token的组合可以完美表示上面的所有单词,这就节省了25%的存储空间!当然,不同的预训练模型Word Piece词典的结构各有不同,例如这里bert-base-cased模型对于“learning”就是原词存储的。

2544ca1d4549407f840e8b8ea62af8da.png

3、tokenizer.encode(input_texts)

        tokenizer.encode(input_texts, padding=True, truncation=True, return_tensors="pt")方法综合了分词+索引编码两个方法(tokenize()+convert_tokens_to_ids()),先对文本进行分词,然后匹配对应的词索引,返回Token索引列表。对于该索引列表,返回结果中默认包含开头的[CLS]索引和结尾的[SEP]索引。

python">from transformers import BertTokenizertext = 'we are learning python, which is one of the most popular programming languages in the world.'
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
outputs = tokenizer.encode(text, padding=True, truncation=True, return_tensors="pt")
print(outputs)

b29d20ed3df6440faf58757bf0e8fbe8.png

        有encode自然有decode,tokenizer.decode可以将编码后的索引列表转换回分词列表,使用tokenizer.decode(input_ids, skip_special_tokens=False)即可,需要注意的是decode的输入类型为list而不是tensor,所以在encode的时候不设置return_tensors参数。此外,如果我们将skip_special_tokens参数设置为False默认会返回[CLS]和[SEP]两个特殊Token标记,这是Bert类模型的输入格式要求,设置为True则返回不带特殊Token的原始文本(不是Word Piece)

python">from transformers import BertTokenizertext = 'we are learning python, which is one of the most popular programming languages in the world.'
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
outputs = tokenizer.encode(text, padding=True, truncation=True)
print('Encode:', outputs)
outputs = tokenizer.decode(outputs, skip_special_tokens=False)
print('Decode:', outputs)

55769a3a7fe74852bb788ab7e2c6b3aa.png

 


http://www.ppmy.cn/embedded/149895.html

相关文章

基于SpringBoot和PostGIS的全球城市信息管理实践

目录 前言 一、业务需求介绍 1、功能思维导图 二、业务系统后台实现 1、Model层实现 ?2、业务层的实现 3、控制层的实现 三、前端管理业务的实现 1、全球城市列表的实现 ?2、详情页面实现 3、实际城市定位? 四、总结 前言 在全球化和信息化时代背景下&#xff…

Spring Boot实战:构建一个简单的RESTful API

Spring Boot是一个开源框架,旨在简化Spring应用的创建与开发过程。通过Spring Boot,你可以轻松地创建独立、生产级的Spring应用,而不需要复杂的配置。本教程将带领大家一步一步构建一个简单的RESTful API,演示Spring Boot的核心功…

react+antd的Table组件编辑单元格

需求:新增加一行,且单元格可以编辑 场景:真实的业务需求(antd 3 版本react) 效果图:1. 默认增加一行时,第一列是下拉选择框,第2 3列是TextArea,图1 2. 当下拉选择的数据不…

计算机网络•自顶向下方法:计算机网络和因特网

因特网的具体构成 终端(host)也称端系统(end system):运行应用程序 通信链路:光纤,铜线,电磁波, 主要指标为传输速率,也称带宽(bandwidth) 交换设备&#x…

Vite内网ip访问,两种配置方式和修改端口号教程

目录 问题 两种解决方式 结果 总结 preview.host preview.port 问题 使用vite运行项目的时候,控制台会只出现127.0.0.1(localhost)本地地址访问项目。不可以通过公司内网ip访问,其他团队成员无法访问,这是因为没…

Java-37 深入浅出 Spring - IoC容器体系 循环依赖 原型Bean 原型作用域 Lazy ObjectFactory

点一下关注吧!!!非常感谢!!持续更新!!! 大数据篇正在更新!https://blog.csdn.net/w776341482/category_12713819.html 章节内容 上节我们完成了: BeanFact…

多因子模型连载

多因子模型 (Multi-Factor Model)是量化投资中的一种重要工具,用于解释和预测股票收益。它通过将多个不同的因子(如市值、动量、价值、质量等)结合起来,构建一个综合的模型来评估股票的表现。多因子模型不仅能够捕捉单个因子的影响…

LeetCode 242. 有效的字母异位词 (C++实现)

1. 题目描述 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的 字母异位词 。 示例 1: 输入: s “anagram”, t “nagaram” 输出: true 示例 2: 输入: s “rat”, t “car” 输出: false 2. 解题思路 首先定义有26个元素…