Stream API 的设计融合了多个经典设计模式

embedded/2024/12/28 14:03:00/

Stream API 的设计融合了多个经典设计模式

1. 策略模式(Strategy Pattern)

策略模式定义了一个算法的家族,将每个算法封装起来,并使它们可以互换。Stream API 中的每个操作(如 filter(), map())都是一个策略,它允许用户以灵活的方式组合这些操作。

java">import java.util.*;
import java.util.stream.*;public class StrategyPatternDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 策略1: 过滤偶数List<Integer> evenNumbers = numbers.stream().filter(n -> n % 2 == 0)  // 策略1.collect(Collectors.toList());// 策略2: 将每个数字加倍List<Integer> doubledNumbers = numbers.stream().map(n -> n * 2)           // 策略2.collect(Collectors.toList());System.out.println("Even Numbers: " + evenNumbers);System.out.println("Doubled Numbers: " + doubledNumbers);}
}

输出:

Even Numbers: [2, 4, 6, 8, 10]
Doubled Numbers: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

上面代码中,filtermap 都是不同的策略操作,它们可以灵活地组合在一起。你可以选择不同的策略(如筛选偶数或将数字加倍),并将它们组合成一个管道来处理数据。

2. 装饰者模式(Decorator Pattern)

Stream API 中的中间操作(如 filter(), map())是典型的装饰者模式。每个中间操作都会返回一个新的流对象,逐步增强原始流的功能。

java">import java.util.*;
import java.util.stream.*;public class DecoratorPatternDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用装饰者模式: 先过滤偶数,再将每个数字加倍List<Integer> result = numbers.stream().filter(n -> n % 2 == 0)   // 装饰者1: 筛选偶数.map(n -> n * 2)           // 装饰者2: 每个数字加倍.collect(Collectors.toList());System.out.println("Processed Numbers: " + result);}
}

输出:

Processed Numbers: [4, 8, 12, 16, 20]

上面代码中,filtermap 是装饰者模式的实现。每个中间操作都返回一个新的流,逐步增强原始流的功能。最终的流会先过滤偶数,再将这些偶数乘以 2。

3. 惰性求值(Lazy Evaluation)

Stream API 的惰性求值意味着中间操作不会立即执行,只有在遇到终端操作时,流才会开始计算。以下是一个示例:

java">import java.util.*;
import java.util.stream.*;public class LazyEvaluationDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 惰性求值,只有在终端操作(forEach)执行时,流才会开始计算numbers.stream().filter(n -> {System.out.println("Filtering: " + n);return n % 2 == 0;  // 过滤偶数}).map(n -> {System.out.println("Mapping: " + n);return n * 2;       // 每个数字加倍}).forEach(n -> System.out.println("Final Result: " + n));  // 输出结果}
}

输出:

Filtering: 1
Filtering: 2
Mapping: 2
Final Result: 4
Filtering: 3
Filtering: 4
Mapping: 4
Final Result: 8
Filtering: 5
Filtering: 6
Mapping: 6
Final Result: 12
Filtering: 7
Filtering: 8
Mapping: 8
Final Result: 16
Filtering: 9
Filtering: 10
Mapping: 10
Final Result: 20

上面代码中,filtermap 都是懒执行的操作。filtermap 的计算只有在调用终端操作(forEach)时才会开始执行。可以看到,只有经过过滤和映射的元素才会打印出来。

4. 合并模式(Merging / ForkJoin)

并行流实现了合并模式,它通过 ForkJoinPool 将任务拆分成子任务并行执行,然后合并结果。以下是一个简单的并行流的示例:

java">import java.util.*;
import java.util.stream.*;public class ForkJoinDemo {public static void main(String[] args) {List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);// 使用并行流执行计算int sum = numbers.parallelStream().map(n -> {System.out.println("Processing: " + n + " in thread: " + Thread.currentThread().getName());return n;}).reduce(0, Integer::sum);System.out.println("Total Sum: " + sum);}
}

输出(不同的线程名可能会有所不同):

Processing: 7 in thread: main
Processing: 6 in thread: main
Processing: 8 in thread: ForkJoinPool.commonPool-worker-2
Processing: 9 in thread: main
Processing: 10 in thread: main
Processing: 2 in thread: ForkJoinPool.commonPool-worker-2
Processing: 3 in thread: ForkJoinPool.commonPool-worker-1
Processing: 1 in thread: ForkJoinPool.commonPool-worker-2
Processing: 5 in thread: main
Processing: 4 in thread: ForkJoinPool.commonPool-worker-1
Total Sum: 55

在上面代码中,parallelStream() 会将任务分成多个子任务并行执行。每个子任务在不同的线程中处理数据,最终通过 reduce 操作将结果合并(在这个例子中是求和)。

总结:

  • 策略模式:Stream 中的每个操作(如 filter()map())都代表一个策略,可以灵活组合。
  • 装饰者模式:中间操作是装饰者,逐步增强流的功能,操作不会修改原始流。
  • 惰性求值:Stream 的中间操作(如 filter()map())在终端操作(如 forEach())触发时才会执行。
  • 合并模式:并行流通过将任务拆分成多个子任务并行执行,最终合并结果,适合多核处理器的计算密集型任务。

http://www.ppmy.cn/embedded/149458.html

相关文章

Hive 部署

1 下载并安装 1.1 Hadoop安装 参考另一篇博客&#xff1a;Hadoop 部署 1.2 安装包下载 可通过下面网站下载&#xff1a; 官网&#xff1a;https://dlcdn.apache.org/hive/。清华源&#xff1a;https://mirrors.tuna.tsinghua.edu.cn/apache/hive/。 比如下载apache-hive-4…

FIR数字滤波器设计——窗函数设计法——滤波器的时域截断

与IIR数字滤波器的设计类似&#xff0c;设计FIR数字滤波器也需要事先给出理想滤波器频率响应 H ideal ( e j ω ) H_{\text{ideal}}(e^{j\omega}) Hideal​(ejω)&#xff0c;用实际的频率响应 H ( e j ω ) H(e^{j\omega}) H(ejω)去逼近 H ideal ( e j ω ) H_{\text{ideal}}…

工业安全监测审计系统(源码+文档+部署+讲解)

本文将深入解析“工业安全监测审计系统”的项目&#xff0c;探究其架构、功能以及技术栈&#xff0c;并分享获取完整源码的途径。 系统概述 工业安全监测审计系统是一个综合性的管理平台&#xff0c;旨在提高审计和考核工作的效率和质量。系统通过首页、装置信息、装置审计记…

Rust调用C动态库

Rust调用C动态库 环境 rust: 1.83.0(2024-11-26) bindgen: 0.71.1 cmake: 3.26.41. rust bindgen bindgen 是一个能自动为 C&#xff08;或 C&#xff09;库生成 Rust 绑定的辅助库和命令行工具。C &#xff08;目前&#xff09;的支持并不完整。 也就是说&#xff0c;bind…

YOLO模型格式转换:pt -> onnx -> rknn

导出 RKNPU 适配模型说明 Source ​ 本仓库基于 https://github.com/ultralytics/ultralytics 仓库的 c9be1f3cce89778f79fb462797b8ca0300e3813d commit 进行修改,验证. 修改前的源码链接&#xff1a; https://github.com/ultralytics/ultralytics/tree/c9be1f3cce89778f79f…

uniapp 微信小程序 数据空白展示组件

效果图 html <template><view class"nodata"><view class""><image class"nodataimg":src"$publicfun.locaAndHttp()?localUrl:$publicfun.httpUrlImg(httUrl)"mode"aspectFit"></image>&l…

深度学习与图像处理(国产深度学习框架——飞桨官方指定教材)

计算机视觉从小白到大师之路 《深度学习与图像处理&#xff08;PaddlePaddle版&#xff09;》这一本就够了 1.引言 随着人工智能技术的飞速发展&#xff0c;各行各业对深度学习、图像处理相关领域的人才需求日益迫切。本书旨在通过系统的理论讲解与丰富的实战案例&#xff0…

Node-解决sequelize配置时区

目录 什么是 UTC&#xff08;协调世界时&#xff09;&#xff1f; UTC 的重要性 UTC 和本地时间的关系 如何转换 UTC 和本地时间&#xff1f; 为什么要使用 UTC&#xff1f; 如何在编程中使用 UTC&#xff1f; Day.js 示例&#xff1a; 使用 Sequelize 进行数据库操作时&…