Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

embedded/2024/12/23 6:55:52/

Pytorch | 利用MI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • MI-FGSM介绍
    • 背景
    • 算法原理
  • MI-FGSM代码实现
    • MI-FGSM算法实现
    • 攻击效果
  • 代码汇总
    • mifgsm.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

本篇文章我们使用Pytorch实现MI-FGSM对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:

在这里插入图片描述

MI-FGSM介绍

MI-FGSM(Momentum Iterative Fast Gradient Sign Method)是一种基于动量的迭代快速梯度符号法,是在FGSM(Fast Gradient Sign Method)基础上的改进,旨在生成更具攻击性和隐蔽性的对抗样本,以下是对其的详细介绍:

背景

  • 在对抗攻击领域,FGSM是一种简单有效的攻击方法,但它仅进行一次梯度计算和更新,生成的对抗样本可能不够强大。为了进一步提高攻击效果,研究人员提出了迭代攻击的方法,如I-FGSM(Iterative FGSM),通过多次迭代来逐步调整对抗样本。MI-FGSM在I-FGSM的基础上引入动量项,使得攻击能够更好地利用历史梯度信息,加速收敛并提高攻击成功率。

算法原理

  • 初始化:与FGSM类似,首先需要一个预训练的模型、损失函数、原始图像和对应的真实标签,以及攻击步长 ϵ \epsilon ϵ 、迭代次数 T T T和动量因子 μ \mu μ等参数。
  • 迭代更新:在每次迭代中,计算当前对抗样本相对于模型输出的损失梯度,并将其与上一次迭代的动量项相加,得到更新后的梯度方向。然后,根据更新后的梯度方向和攻击步长,对对抗样本进行更新。具体计算公式如下:
    g t + 1 = μ ⋅ g t + ∇ x J ( x t a d v , y ) ∥ ∇ x J ( x t a d v , y ) ∥ 1 g_{t+1}=\mu \cdot g_{t}+\frac{\nabla_{x} J\left(x_{t}^{adv}, y\right)}{\left\|\nabla_{x} J\left(x_{t}^{adv}, y\right)\right\|_{1}} gt+1=μgt+xJ(xtadv,y)1xJ(xtadv,y)
    x t + 1 a d v = x t a d v + ϵ ⋅ sign ( g t + 1 ) x_{t+1}^{adv}=x_{t}^{adv}+\epsilon \cdot \text{sign}\left(g_{t+1}\right) xt+1adv=xtadv+ϵsign(gt+1)
    其中, g t g_{t} gt 是第 t t t次迭代的动量项, x t a d v x_{t}^{adv} xtadv是第 t t t次迭代得到的对抗样本, J J J是损失函数, ∇ x J ( x t a d v , y ) \nabla_{x} J\left(x_{t}^{adv}, y\right) xJ(xtadv,y) 是损失函数关于对抗样本的梯度, sign \text{sign} sign 表示符号函数。
  • 投影操作:为了确保对抗样本在合理的范围内,通常还需要进行投影操作,将其像素值限制在有效区间内,如 [ 0 , 1 ] [0, 1] [0,1] [ − 1 , 1 ] [-1, 1] [1,1]

MI-FGSM代码实现

MI-FGSM算法实现

python">import torch
import torch.nn as nndef MI_FGSM(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1):"""MI-FGSM (Momentum Iterative Fast Gradient Sign Method) 参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 迭代次数- decay: 动量衰减因子"""# alpha 每次迭代步长alpha = epsilon / num_iterations# 复制原始图像作为初始的对抗样本perturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for _ in range(num_iterations):outputs = model(perturbed_images)loss = criterion(outputs, labels)model.zero_grad()loss.backward()data_grad = perturbed_images.grad.data# 更新动量 (batch_size, channels, height, width)momentum = decay * momentum + data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)# 计算带动量的符号梯度sign_data_grad = momentum.sign()# 更新对抗样本perturbed_images = perturbed_images + alpha * sign_data_gradperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images

攻击效果

在这里插入图片描述

代码汇总

mifgsm.py

python">import torch
import torch.nn as nndef MI_FGSM(model, criterion, original_images, labels, epsilon, num_iterations=10, decay=1):"""MI-FGSM (Momentum Iterative Fast Gradient Sign Method) 参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 最大扰动幅度- num_iterations: 迭代次数- decay: 动量衰减因子"""# alpha 每次迭代步长alpha = epsilon / num_iterations# 复制原始图像作为初始的对抗样本perturbed_images = original_images.clone().detach().requires_grad_(True)momentum = torch.zeros_like(original_images).detach().to(original_images.device)for _ in range(num_iterations):outputs = model(perturbed_images)loss = criterion(outputs, labels)model.zero_grad()loss.backward()data_grad = perturbed_images.grad.data# 更新动量 (batch_size, channels, height, width)momentum = decay * momentum + data_grad / torch.sum(torch.abs(data_grad), dim=(1, 2, 3), keepdim=True)# 计算带动量的符号梯度sign_data_grad = momentum.sign()# 更新对抗样本perturbed_images = perturbed_images + alpha * sign_data_gradperturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images

train.py

python">import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18# 数据预处理
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)if __name__ == "__main__":# 训练模型for epoch in range(10):  # 可以根据实际情况调整训练轮数running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')running_loss = 0.0torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')print('Finished Training')

advtest.py

python">import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as pltssl._create_default_https_context = ssl._create_unverified_context# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,shuffle=False, num_workers=2)# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = ResNet18(num_classes=10).to(device)criterion = nn.CrossEntropyLoss()# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))if __name__ == "__main__":# 在测试集上进行FGSM攻击并评估准确率model.eval()  # 设置为评估模式correct = 0total = 0epsilon = 16 / 255  # 可以调整扰动强度for data in testloader:original_images, labels = data[0].to(device), data[1].to(device)original_images.requires_grad = Trueattack_name = 'MI-FGSM'if attack_name == 'FGSM':perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'BIM':perturbed_images = BIM(model, criterion, original_images, labels, epsilon)elif attack_name == 'MI-FGSM':perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)perturbed_outputs = model(perturbed_images)_, predicted = torch.max(perturbed_outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / total# Attack Success RateASR = 100 - accuracyprint(f'Load ResNet Model Weight from {weights_path}')print(f'epsilon: {epsilon}')print(f'ASR of {attack_name} : {ASR}%')

http://www.ppmy.cn/embedded/148010.html

相关文章

Golang中的Map是怎么遍历的

在 Golang 中,遍历 map 的常见方法是使用 for...range 循环。map 是无序的键值对集合,因此遍历 map 时,每次迭代访问的键值对顺序可能不同。 以下是一个遍历 map 的示例: package mainimport "fmt"func main() {// 创…

帝国cms同一条信息使用不同的多个内容页模板伪静态实现教程

理论上可以实现一条信息使用无数个内容页模板&#xff0c;实现过程&#xff1a; 1、/e/action目录下新建bishun.php&#xff0c;内容如下&#xff1a; <?php require(../class/connect.php); require(../class/db_sql.php); require(../class/functions.php); require(..…

sql注入之union注入

Sql注入之union注入攻击 今天讲讲sql注入攻击流程 事先声明&#xff0c;本文仅仅作为学习使用&#xff0c;因个人原因导致的后果&#xff0c;皆与本人无关&#xff0c;后果由个人承担。 本次演示靶机为封神台里的题目&#xff0c;具体连接如下 https://hack.zkaq.cn/battle…

怎么在Windows上远程控制Mac电脑?

远程看看&#xff08;AnyViewer&#xff09;Mac版是一款免费的远程桌面软件&#xff0c;支持Windows、macOS、iOS和Android系统。通过远程看看&#xff0c;您可以轻松实现Windows远程控制Mac电脑。此软件采用了端到端的ECC非对称加密技术&#xff0c;保障了在远程连接过程中的隐…

数据挖掘之认识数据

在数据挖掘过程中&#xff0c;数据的认识是非常重要的一步&#xff0c;它为后续的数据分析、建模、特征选择等工作奠定基础。以鸢尾花数据集&#xff08;Iris Dataset&#xff09;数据集之鸢尾花数据集&#xff08;Iris Dataset&#xff09;-CSDN博客为例&#xff0c;下面将介绍…

3. Kafka入门—安装与基本命令

Kafka基础操作 一. 章节简介二. kafka简介三. Kafka安装1. 准备工作2. Zookeeper安装2.1 配置文件2.2 启动相关命令3. Kafka安装3.1 配置文件3.2 启动相关命令-------------------------------------------------------------------------------------------------------------…

[路由引入]OSPF\ISIS路由引入案例

前言 路由引入技术的作用 实现不同路由协议间的传递实现对业务流量的灵活把控 路由引入技术的方向 具有方向性&#xff0c;将信息A传递B&#xff0c;则路由协议B可获得路由协议A中的路由信息。但是&#xff0c;此时路由协议A不知道路由协议B中的信息&#xff0c;除非配置B到A的…

【Java基础面试题032】Java中的字节码是什么?

回答重点 Java字节码是Java编译器将Java源代码编译后生成的 位于Java源代码与JVM执行的执行的机器码之间。 Java字节码由JVM解释或即时编译&#xff08;JIT&#xff09;为机器码执行 扩展知识 Java字节码的关键点 1&#xff09;字节码结构&#xff1a; Java字节码是与平…