WebRTC服务质量(04)- 重传机制(01) RTX NACK概述

embedded/2024/12/20 7:59:58/

WebRTC服务质量(01)- Qos概述
WebRTC服务质量(02)- RTP协议
WebRTC服务质量(03)- RTCP协议
WebRTC服务质量(04)- 重传机制(01) RTX NACK概述
WebRTC服务质量(05)- 重传机制(02) NACK判断丢包
WebRTC服务质量(06)- 重传机制(03) NACK找到真正的丢包

一、前言:

我们都知道WebRtc传输层一般选用UDP(允许你选用TCP,一般没人这么干),UDP的特点就是不能保证不丢包,并且不能保证顺序。那么,如果我们丢包了应该怎么办呢?目前WebRtc当中选择的办法是使用FEC和NACK机制,也就是说,我先自己尝试恢复,恢复不过来要求发送端再发一次。

二、NACK机制:

2.1、定义:

NACK(Negative Acknowledgments)是一种反馈机制,用于通知发送端某些数据包在传输过程中丢失了,从而让发送端可以知道需要重新发送丢失的数据包。

2.2、工作原理:

  • 丢包检测: 接收端根据 RTP数据包的序列号检测丢失的数据包。如果序列号不连续,则说明有数据包丢失。
  • 发送NACK: 接收端通过RTCP向发送端发送NACK消息,告知具体丢失了哪些序列号的数据包。
  • 重传丢包: 发送端在接收到NACK后,会重新发送被请求的丢失数据包。

2.3、优点:

  • 提高了数据传输的可靠性,同时尽量减少重新发送不必要的数据。
  • 适用于实时通信,例如视频会议,因为它能够快速恢复丢失的数据。

2.4、实际用途:

NACK通常用于对丢包敏感的传输,比如视频或音频编码中关键帧(Key Frame)或解码参考数据等。

三、RTX机制:

3.1、定义:

RTX(Retransmission)是WebRTC中实现NACK的一个实际重传机制,用于基于NACK反馈进行丢包的重传。

3.2、工作原理:

  • RTX在RTP层的基础上增加了专用的传输通道,用于发送重传的数据包。

  • 被重传的数据包通过RTX专用的RTP流发送,重传数据包的Payload Type或者**SSRC(Synchronization Source)**不同于原始流,便于接收端区分哪部分数据是重传的。

  • RTX SSRC/扩展头部: RTX流使用单独的SSRC,接收端可以轻松区分原始数据流和重传流。

  • 重传的数据包结构: 在RTP Payload部分包含一些原始包的元信息,比如原始的RTP序列号,以帮助接收端恢复正确的顺序。

3.3、优点:

  • RTX设计为独立的RTP流,使得原始包和重传包的管理更加清晰。
  • 支持高效、精准的重传,尤其是和NACK配合使用时表现最佳。

3.4、缺点:

  • RTX重传增加了带宽使用量,因为重传的数据本身需要额外的网络资源。
  • 如果丢包率持续较高,重传可能导致网络拥塞问题。

四、NACK 和 RTX 的配合:

4.1、简化流程:

WebRTC中的NACK和RTX经常协同工作,以下是简化的协作流程:

  1. 媒体协商时候确定是否支持NACK或者RTX。
  2. 接收端发现丢包,并通过NACK通知发送端。
  3. 发送端根据NACK请求使用RTX机制发送丢失数据包。
  4. 接收端将RTX流中的数据插入到原始流的正确位置,恢复丢失的数据包。

4.2、媒体协商时候确定是否支持:

比如有以下媒体协商SDP内容:

m=video 9 UDP/TLS/RTP/SAVPF 96 97 98 99 100 101 102 122 127 121 125 107 108 109 124 120 123 119 114 115
a=sendrecv
a=rtpmap:96 VP8/90000
a=rtcp-fb:96 goog-remb
a=rtcp-fb:96 transport-cc
a=rtcp-fb:96 ccm fir
a=rtcp-fb:96 nack
a=rtcp-fb:96 nack pli
a=rtpmap:97 rtx/90000
a=fmtp:97 apt=96
  • a=rtpmap:96 VP8/90000:表示支持VP8视频编解码器,pt为96;
  • a=rtcp-fb:96 nack:表示使用nack来进行96的丢包重传;
  • a=rtmap:97 rtx/90000:表示支持rtx重传,pt为97;
  • a=fmtp:97 apt:96:表示绑定96和97,使用97来重传96;

4.3、发送数据:

在源源不断发送RTP数据包过程中:

  • 如果接收端B收到包序号不连续,未必是丢包,有可能是乱序,在jitter bufferwebrtc默认是20ms)里面稍微调整下;
  • 如果调整之后发现确实丢包,那么发送RTCP-RTPFB-NACK给发送端一个回馈消息;
  • 发送端解析RTCP的NACK请求,从历史队列找出丢失的包(如果可以找到),打包成RTX数据包,重新发送。
  • 接收端收到RTX包之后,去丢失队列中去找,如果找到了,就从丢失队列中移除对应包。

4.4、适用场景:

  • 低延迟场景: NACK和RTX针对丢包的小范围重传非常有效,因为其反馈与重传机制相对快速,对于实时性较高的应用(如视频通话)非常适用。
  • 丢包率低的网络环境: 在较高丢包率的环境中,频繁的NACK请求及RTX重传可能造成更大的网络负担,影响质量。

http://www.ppmy.cn/embedded/147223.html

相关文章

智能光学计算成像技术与应用

智能光学计算成像是一个将人工智能(AI)与光学成像技术相结合的前沿领域,它通过深度学习、光学神经网络、超表面光学(metaphotonics)、全息技术和量子光学等技术,推动光学成像技术的发展。以下是智能光学计算…

springcloud-gateway获取应用响应信息乱码

客户端通过springcloud gateway跳转访问tongweb上的应用,接口响应信息乱码。使用postman直接访问tongweb上的应用,响应信息显示正常。 用户gateway中自定义了实现GlobalFilter的Filter类,在该类中获取了上游应用接口的响应信息,直…

BlueLM:以2.6万亿token铸就7B参数超大规模语言模型

一、介绍 BlueLM 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型,本次发布包含 7B 基础 (base) 模型和 7B 对话 (chat) 模型,同时我们开源了支持 32K 的长文本基础 (base) 模型和对话 (chat) 模型。 更大量的优质数据 :高质量语料…

推动数字金融高质量发展行动方案之数据安全解读

一、《方案》中的数据安全要求 2024年11月27日,中国人民银行等七部门联合印发《推动数字金融高质量发展行动方案》(以下简称《方案》),明确提出系统推进金融机构数字化转型、运用数字技术提升重点领域金融服务质效、夯实数字金融发展基础、完善数字金融治理体系等方面的重…

网络安全(4)_网络层安全IPSec

5. 网络层安全IPSec 5.1 IPSec协议 (1)前面使用Outlook进行数字签名和数字加密是应用层实现的安全。安全套接字实现的安全是在应用层和传输层之间插入了一层来实现数据通信安全。而IPSec是网络层实现的安全。不需要应用程序的支持,只要配置…

使用 Puppeteer 快速上手 Node.js 爬虫

使用 Puppeteer 库通过自动化浏览器来访问百度图片搜索,并在搜索结果中下载图片。代码分为两部分: 自动化浏览器任务:使用 Puppeteer 浏览百度图片搜索并获取图片 URL。图片下载:检查图片 URL 类型(base64 或 URL&…

arcgisPro将面要素转成CAD多段线

1、说明:正常使用【导出为CAD】工具,则导出的是CAD三维多线段,无法进行编辑操作、读取面积等。这是因为要素面中包含Z值,导出则为三维多线段数据。需要利用【复制要素】工具禁用M值和Z值,再导出为CAD,则得到…

使用支持向量机(SVM)实现二分类

前言: 支持向量机(Support Vector Machine,SVM)是一种监督式学习的机器学习算法,主要用于分类和回归分析。其基本思想是在特征空间中找到一个最优的超平面,将不同类别的数据点尽可能地分开。在分类问题中,这个超平面能够使两类数据点之间的间隔(Margin)最大化。 我认…