概率论得学习和整理27:关于离散的数组 随机变量数组的均值,方差的求法3种公式,思考和细节。

embedded/2024/12/20 2:28:14/

目录

1 例子1:最典型的,最简单的数组的均值,方差的求法

2 例子1的问题:例子1只是1个特例,而不是普遍情况。

2.1 例子1各种默认假设,导致了求均值和方差的特殊性,特别简单。

2.2 我觉得 加权平均值公式,比平均值的原始公式Σxi/n 更为普适性

2.3 后面引入随机变量,更是解决了部分 无穷数组 求均值,方差的问题 

2.4 学习顺序的错位

2.3 学习内容的缺失

3 对例子1更一般的均值求法:加权平均值的求法

4 用加权法求会不会多此一举?

5  例子2:对于非等概率的数组,用加权法求均值和方差

(例子1毕竟是特例,不如加权求法更普适性)

5.0 非等概率的数组

5.1 针对非等权重的数组,求均值

5.2 针对非等权重的数组,求方差,就必须用权重了

6 从一般性的数组,再到随机变量数组

6.1 什么是随机变量数组

6.2 随机变量的均值计算,均值=数学期望

6.3 随机变量的方差计算

7.4 VAR=E(Xi^2) - E(Xi)^2特殊公式的含义,别用错了

7 例子3: 计算随机变量数组的均值和方差

7.1 丢1次骰子的随机变量和对应概率/权重

7.2 丢2次骰子的随机变量和对应概率/权重

7.3 这2个随机变量的均值,方差的计算


1 例子1:最典型的,最简单的数组的均值,方差的求法

  • 对象:一个数组
  • 均值:Average=ΣXi*/N = sum/ count
  • 离差:(Xi-A)           # 离差,比较的是每个数列里的值与特定值如均值的差!距离差!
  • 离差和:Σ(Xi-A)
  • 离差和:Σ(Xi-A)
  • 离差平方和:Σ(Xi-A)^2
  • 方差:Σ(Xi-A)^2/N

具体到这个例子里

  • Average=21/6=3.5
  • Var= δ^2=2.917

2 例子1的问题:例子1只是1个特例,而不是普遍情况。

2.1 例子1各种默认假设,导致了求均值和方差的特殊性,特别简单。

  • 数组1,2,3,4,5,6 
  • 特殊性1:只有6个数
  • 特殊性2:默认等概率分布
  • 特殊性3:求均值,没引入权重概念,只是直接 /n, 默认了等权重
  • 特殊性4:求方差,也是直接用的/n, 默认了等权重

2.2 我觉得 加权平均值公式,比平均值的原始公式Σxi/n 更为普适性

我觉得 加权平均值,比  Σxi/n 更为普适性

特殊性3:求均值,没引入权重概念,只是直接 /n, 默认了等权重

这个地方我需要详细解释一下

比如1个数组,

1,2,3,4,5,6 ....100, 理论上,全部相加 Σxi/n 也没错,是最底层的计算均值思路和公式

但是

很多时候,我们的数组里,有多个数是重复出现的,

1,2,3,4,5,6,1,2,3,4,5,6,...5,6,100  (可能远大于100)

我们可能需要统计频度数, 频度=权重

从而用加权平均值的计算方法

比如 1*w1+2w2+.....6*w3+100*w100

所以我觉得,加权平均数,是比这种 等权重平均数更一般的情况

即使是1,2,3,4,5,6 ....100, 理论上,全部相加 Σxi/n 也没错 ,也可以强行认为他们的权重相等都是1/n,所以我觉得 加权平均值,比  Σxi/n 更为普适性

2.3 后面引入随机变量,更是解决了部分 无穷数组 求均值,方差的问题 

另外往下引申一下

为什么要有随机变量,那也是因为数组除了重复,有点乱,还可能无穷。对于无穷数组其实不好计算。但是如果从概率的思路,把概率当成权重,其实可以计算无穷数组。

所以,我觉得 随机变量数组---对比 普通数组,是可以部分解决无穷数组的问题的!

即使是一个无穷数组,只要可以知道每个 具体数对于的概率,可以计算均值,方差等!这样就用概率,绕过了无穷计算这个问题!

2.4 学习顺序的错位

  • 其实,我们应该先学习一般规律,再学习
  • 也许教小学生可以这么教,先用特殊好懂的入门。但是即使这样,也应该把一般性的情况要讲,至少明白,这个东西是有很大局限性的。

2.3 学习内容的缺失

  • 更不好的是,完全不学,不了解,一般化的均值,方差的求法
  • 如果只会求这种 硬来的公式
  • 完全不理解 加权平均值的思路,遇到有频度的数据,就无法处理。
  • 甚至后面也无法理解,随机变量的均值的求法。

3 对例子1更一般的均值求法:加权平均值的求法

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N
  • 定义公式求方差:Σ(Xi -均值)^2 / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi
  • 加权法求方差:Σ(Xi -均值)^2 *Wi

可以看到,两种方法的求得均值,方差都相等。

4 用加权法求会不会多此一举?

不会,看下面的例子

5  例子2:对于非等概率的数组,用加权法求均值和方差

(例子1毕竟是特例,不如加权求法更普适性)

5.0 非等概率的数组

  • 还是一个普通数组,但是是 1,1,3,4,5,6 
  • 其中 1出现2次,没有2
  • 可以转化为频度数组,1,3,4,5,6 对应频度分别是2,1,1,1,1

5.1 针对非等权重的数组,求均值

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi

都好用

比如1的频度为8,就相当于是8个1,即1,1,1,1,1,1,1,1

5.2 针对非等权重的数组,求方差,就必须用权重了

方法1:  用原始公式求

  • 定义公式求方差:Σ(Xi -均值)^2 / N   这样是错误的

方法2:用加权法求

  • 加权法求方差:Σ(Xi -均值)^2 *Wi

只能用加权法求方差了

6 从一般性的数组,再到随机变量数组

6.1 什么是随机变量数组

随机变量数组,就是 频度=权重=概率的,一个特殊数组

随机变量数组,可以应对部分无穷的数组的计算

6.2 随机变量的均值计算,均值=数学期望

方法1:  用原始公式求

  • 定义公式求均值:ΣXi / N

方法2:用加权法求

  • 加权法求均值:ΣXi *Wi
  • 随机变量的数学期望 =均值   ΣXi *Wi =ΣXi *Pi

6.3 随机变量的方差计算

方法1:  用原始公式求(错误,不能这么求)

  • 定义公式求方差:Σ(Xi -均值)^2 / N  ,没办法这么求

方法2:用加权法求

  • 加权法求方差:Σ(Xi -均值)^2 *Wi
  • 实际上,因为Wi =Pi
  • 加权法求方差, 就是随机变量的均值公式:Σ(Xi -均值)^2 *Wi =Σ(Xi -均值)^2 *Pi
  • 公式继续变形
  • :Σ(Xi -均值)^2 *Wi =Σ(Xi -均值)^2 *Pi = E((Xi -均值)^2)= E((Xi -E(X))^2)

方法3:用2个随机变量数组的均值的差的一个变形公式

  • 随机变量的方差:VAR=Σ(Xi -均值)^2 *Pi  (形式上ΣYi*Pi =E(Y))
  • 随机变量的方差:VAR=E((Xi -E(X))^2)
  • 随机变量的方差:VAR=E(Xi^2) - E(Xi)^2
  • 这个可以推导处理出来的

7.4 VAR=E(Xi^2) - E(Xi)^2特殊公式的含义,别用错了

核心意义: 用均值可以计算方差!

知道均值了就能知道方差!

核心意义,用2个数组的均值,可以计算1个数组的方差!

  • 随机变量的方差:VAR=E(Xi^2) - E(Xi)^2
  • step1: 先生成1个新的随机变量数组,Xi^2
  • step2: 计算E(Xi^2)
  • step3: 用老的xi数组,计算E(X) ,再计算E(X)^2
  • step4: 两者相减=方差, VAR=E(Xi^2)- E(X)^2

7 例子3: 计算随机变量数组的均值和方差

7.1 丢1次骰子的随机变量和对应概率/权重

7.2 丢2次骰子的随机变量和对应概率/权重

7.3 这2个随机变量的均值,方差的计算


http://www.ppmy.cn/embedded/147162.html

相关文章

13.继承和多态的实例 C#

这是一个动物园的动物发出不同的声音,使用了继承和多态 using System; using System.Collections.Generic;namespace InheritanceAndPolymorphismExample {//一个动物类,包含属性:名称。包含方法:发出叫声public class Animal{pub…

Element@2.15.14-tree checkStrictly 状态实现父项联动子项,实现节点自定义编辑、新增、删除功能

背景:现在有一个新需求,需要借助树结构来实现词库的分类管理,树的节点是不同的分类,不同的分类可以有自己的词库,所以父子节点是互不影响的;同样为了选择的方便性,提出了新需求,选择…

Oracle JDK需登录下载解决

JDK下载地址 地址:https://www.oracle.com/java/technologies/downloads/archive/ 登录账号获取 访问:https://bugmenot.com/view/oracle.com 直接复制账号密码登录下载

音频开发中常见的知识体系

在 Linux 系统中,/dev/snd 目录包含与声音设备相关的文件。每个文件代表系统中的一部分音频硬件或音频控制接口。以下是你列出的文件及其含义: 一.基本术语 样本长度(sample):样本是记录音频数据最基本的单位,计算机对每个通道采…

DolphinScheduler部署

DolphinScheduler部署 3种方式通过 Docker 完成 DolphinScheduler 的部署 快速体验,推荐 standalone-server 镜像较完整服务,推荐 docker-compose 启动服务已有自己数据库或 zk 服务,想沿用这些基础服务,参考沿用已有的 Postgre…

基于注意力的几何感知的深度学习对接模型 GAABind - 评测

GAABind 作者是苏州大学的生物基础与医学院, 期刊是 Briefings in Bioinformatics, 2024, 25(1), 1–14。GAABind 是一个基于注意力的几何感知蛋白-小分子结合模式与亲和力预测模型,可以捕捉小分子和蛋白的几何、拓扑结构特征以及相互作用。使用 PDBBind2020 和 CASF2016 作…

synchronized 锁升级实现原理

synchronized 锁升级实现原理 对象的内存结构 在HotSpot虚拟机中,对象在内存中存储的布局可分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充 我们需要重点分析MarkWord对象头 MarkWord …

4.redis通用命令

文章目录 1.使用官网文档2.redis通用命令2.1set2.2get2.3.redis全局命令2.3.1 keys 2.4 exists2.5 del(delete)2.6 expire - (失效时间)2.7 ttl - 过期时间2.7.1 redis中key的过期策略2.7.2redis定时器的实现原理 2.8 type2.9 object 3.生产环境4.常用的数据结构4.1认识数据类型…