【linux学习指南】linux捕捉信号

embedded/2024/12/2 21:34:25/

请添加图片描述

文章目录

  • 📝前言
  • 🌠 信号捕捉的流程
    • 🌉 sigaction
  • 🌠穿插话题-操作系统是怎么运⾏的
    • 🌉 硬件中断
    • 🌉时钟中断
  • 🚩总结


📝前言

在这里插入图片描述

🌠 信号捕捉的流程

在这里插入图片描述

如果信号的处理动作是⽤⼾⾃定义函数,在信号递达时就调⽤这个函数,这称为捕捉信号。
由于信号处理函数的代码是在⽤⼾空间的,处理过程⽐较复杂,举例如下:

  • ⽤⼾程序注册了SIGQUIT 信号的处理函数sighandler
  • 当前正在执⾏main 函数,这时发⽣中断或异常切换到内核态。
  • 在中断处理完毕后要返回⽤⼾态的main 函数之前检查到有信号SIGQUIT 递达。
  • 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函数, sighandler和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是两个独立的控制流程。
  • sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。
  • 如果没有新的信号要递达,这次再返回用户态就是恢复main函数的上下文继续执行了。

在这里插入图片描述

🌉 sigaction

SYNOPSIS#include <signal.h>int sigaction(int signum, const struct sigaction *act,struct sigaction *oldact);
  • sigaction函数可以读取和修改与指定信号相关联的处理动作。调⽤成功则返回0,出错则返回-1。signo是指定信号的编号。若act指针⾮空,则根据act修改该信号的处理动作。若oact指针⾮空,则通过oact传出该信号原来的处理动作。act和oact指sigaction结构体:

  • 将sa_handler赋值为常数SIG_IGN传给sigaction表⽰忽略信号,赋值为常数SIG_DFL表⽰执⾏系统默认动作,赋值为⼀个函数指针表⽰⽤⾃定义函数捕捉信号,或者说向内核注册了⼀个信号处理函数,该函数返回值为void,可以带⼀个int参数,通过参数可以得知当前信号的编号,这样就可以⽤同⼀个函数处理多种信号。显然,这也是⼀个回调函数,不是被main函数调⽤,⽽是被系统所调⽤。

当某个信号的处理函数被调⽤时,内核⾃动将当前信号加⼊进程的信号屏蔽字,当信号处理函数返回时⾃动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产⽣,那么它会被阻塞到当前处理结束为⽌。如果在调⽤信号处理函数时,除了当前信号被⾃动屏蔽之外,还希望⾃动屏蔽另外⼀些信号,则⽤sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时⾃动恢复原来的信号屏蔽字。sa_flags字段包含⼀些选项,本章的代码都把sa_flags设为0,sa_sigaction是实时信号的处理函数,本章不详细解释这两个字段,有兴趣的同学可以在了解⼀下。

🌠穿插话题-操作系统是怎么运⾏的

🌉 硬件中断

在这里插入图片描述

  • 中断向量表就是操作系统的⼀部分,启动就加载到内存中了
  • 通过外部硬件中断,操作系统就不需要对外设进⾏任何周期性的检测或者轮询
  • 由外部设备触发的,中断系统运⾏流程,叫做硬件中断
// Linux
内核
0.11 源码voidtrap_init(void)
{int i;set_trap_gate(0, &divide_error); // 设置除操作出错的中断向量值。以下雷同。set_trap_gate(1, &debug);set_trap_gate(2, &nmi);set_system_gate(3, &int3); /* int3-5 can be called from all */set_system_gate(4, &overflow);set_system_gate(5, &bounds);set_trap_gate(6, &invalid_op);set_trap_gate(7, &device_not_available);set_trap_gate(8, &double_fault);set_trap_gate(9, &coprocessor_segment_overrun);set_trap_gate(10, &invalid_TSS);set_trap_gate(11, &segment_not_present);set_trap_gate(12, &stack_segment);set_trap_gate(13, &general_protection);set_trap_gate(14, &page_fault);set_trap_gate(15, &reserved);set_trap_gate(16, &coprocessor_error);// 下面将int17-48的陷阱门先均设置为reserved,以后每个硬件初始化时会重新设置自己的陷阱门ofor (i = 17; i < 48; i++)set_trap_gate(i, &reserved);set_trap_gate(45, &irq13); // 设置协处理器的陷阱⻔。outb_p(inb_p(0x21) & 0xfb, 0x21);       // 允许主8259A 芯⽚的IRQ2 中断请求。outb(inb_p(0xA1) & 0xdf, 0xA1);         // 允许从8259A 芯⽚的IRQ13 中断请求。set_trap_gate(39, &parallel_interrupt); // 设置并⾏⼝的陷阱⻔。
}void rs_init(void)
{set_intr_gate(0x24,rs1_interrupt); // 设置串行口1的中断门向量(硬件IRQ4信号)。set_intr_gate(0x23,rs2_interrupt); // 设置串行口2的中断门向量(硬件IRQ3信号)。init(tty_table[1].read_q.data);// 初始化串行口1( .data是端口号)。init(tty_table[2].read_q.data);// 初始化串行口2。outb(inb_p(0x21) & 0xE70x21); // 允许主8259A 芯片的IRQ3,IRQ4中断信号请求。
}

🌉时钟中断

问题:
进程可以在操作系统的指挥下,被调度,被执⾏,那么操作系统⾃⼰被谁指挥,被谁推动执⾏呢?

外部设备可以触发硬件中断,但是这个是需要⽤⼾或者设备⾃⼰触发,有没有⾃⼰可以定期触发的
设备?
在这里插入图片描述

这样,操作系统不就在硬件的推动下,⾃动调度了么!!!

// 调度程序的初始化子程序。
void sched_init(void)
{... set_intr_gate(0x20, & timer_interrupt);// 修改中断控制器屏蔽码,允许时钟中断。outb(inb_p(0x21) & ~0x01,0x21);// 设置系统调用中断门。set_system_gate(0×80, & system_call);...
}
// system_call.s
_timer_interrupt : ...;
// do_timer(CPL)执行任务切换、计时等工作,在kernel/shched.c,305行实现。
call _do_timer; // 'do_timer(long CPL )' does everything from// 调度入口
void do_timer(long cpl)
{...;schedule();
}
void schedule(void)
{switch_to(next); // 切换到任务号为next的任务,并运行之。
}

🚩总结

请添加图片描述


http://www.ppmy.cn/embedded/142419.html

相关文章

SeggisV1.0 遥感影像分割软件【源代码】讲解

在此基础上进行二次开发&#xff0c;开发自己的软件&#xff0c;例如&#xff1a;【1】无人机及个人私有影像识别【2】离线使用【3】变化监测模型集成【4】个人私有分割模型集成等等&#xff0c;不管是您用来个人学习还是公司研发需求&#xff0c;都相当合适&#xff0c;包您满…

Web登录页面设计

记录第一个前端界面&#xff0c;暑假期间写的&#xff0c;用了Lottie动画和canvas标签做动画&#xff0c;登录和注册也连接了数据库。 图片是从网上找的&#xff0c;如有侵权私信我删除&#xff0c;谢谢啦~

什么是JSON,有什么特点

什么是 JSON&#xff1f; JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写&#xff0c;同时也易于机器解析和生成。它基于 JavaScript 的子集&#xff0c;但独立于语言&#xff0c;被广泛用于服务器与 Web 应…

试题转excel;试题整理;试卷转Excel,word试题转excel

一、问题描述 我父亲是一名教师&#xff0c;偶尔会需要整理一些高质量的题目到excel中 以往都是手动复制搬运&#xff0c;几百道题几乎需要一个下午的时间 关键这些事&#xff0c;枯燥无聊费眼睛&#xff0c;实在是看起来就很蠢的工作 就想着做一个工具&#xff0c;可以自动…

微服务上下线动态感知实现的技术解析

序言 随着微服务架构的广泛应用&#xff0c;服务的动态管理和监控变得尤为重要。在微服务架构中&#xff0c;服务的上下线是一个常见的操作&#xff0c;如何实时感知这些变化&#xff0c;确保系统的稳定性和可靠性&#xff0c;成为了一个关键技术挑战。本文将深入探讨微服务上…

【笔记】成为雍正

观古代历史&#xff0c;不过帝王一家一姓之家史 时间 1662年&#xff0c;田文镜出生。1672年&#xff0c;张廷玉出生。1674年&#xff0c;胤礽出生。1678年&#xff0c;胤禛出生。1679年&#xff0c;年羹尧出生。1680年&#xff0c;鄂尔泰出生。1700年&#xff0c;索额图被赐死…

python股票数据分析(Pandas)练习

需求&#xff1a; 使用pandas读取一个CSV文件&#xff0c;文件内容包括股票名称、价格和交易量。完成以下任务&#xff1a; 找出价格最高的股票&#xff1b; 计算总交易量&#xff1b; 绘制价格折线图。 代码实现&#xff1a; import pandas as pd import matplotlib.pyplot …

Python学习笔记之IP监控及告警

一、需求说明 作为一名运维工程师&#xff0c;监控系统必不可少。不过我们的监控系统往往都是部署在内网的&#xff0c;如果互联网出口故障&#xff0c;监控系统即使发现了问题&#xff0c;也会告警不出来&#xff0c;这个时候我们就需要补充监控措施&#xff0c;增加从外到内的…