CodeTON Round 9 (Div. 1 + Div. 2, Rated, Prizes! ABCDE题) 视频讲解

embedded/2024/11/29 4:53:40/

A. Shohag Loves Mod

Problem Statement

Shohag has an integer n n n. Please help him find an increasing integer sequence 1 ≤ a 1 < a 2 < … < a n ≤ 100 1 \le a_1 \lt a_2 \lt \ldots \lt a_n \le 100 1a1<a2<<an100 such that a i m o d i ≠ a j m o d j a_i \bmod i \neq a_j \bmod j aimodi=ajmodj ∗ ^{\text{∗}} is satisfied over all pairs 1 ≤ i < j ≤ n 1 \le i \lt j \le n 1i<jn.

It can be shown that such a sequence always exists under the given constraints.

∗ ^{\text{∗}} a m o d b a \bmod b amodb denotes the remainder of a a a after division by b b b. For example, 7 m o d 3 = 1 , 8 m o d 4 = 0 7 \bmod 3 = 1, 8 \bmod 4 = 0 7mod3=1,8mod4=0 and 69 m o d 10 = 9 69 \bmod 10 = 9 69mod10=9.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 50 1 \le t \le 50 1t50) — the number of test cases.

The first and only line of each test case contains an integer n n n ( 2 ≤ n ≤ 50 2 \le n \le 50 2n50).

Output

For each test case, print n n n integers — the integer sequence that satisfies the conditions mentioned in the statement. If there are multiple such sequences, output any.

Example

input
2
3
6
output
2 7 8
2 3 32 35 69 95

Note

In the first test case, the sequence is increasing, values are from 1 1 1 to 100 100 100 and each pair of indices satisfies the condition mentioned in the statement:

  • For pair ( 1 , 2 ) (1, 2) (1,2), a 1 m o d 1 = 2 m o d 1 = 0 a_1 \bmod 1 = 2 \bmod 1 = 0 a1mod1=2mod1=0, and a 2 m o d 2 = 7 m o d 2 = 1 a_2 \bmod 2 = 7 \bmod 2 = 1 a2mod2=7mod2=1. So they are different.
  • For pair ( 1 , 3 ) (1, 3) (1,3), a 1 m o d 1 = 2 m o d 1 = 0 a_1 \bmod 1 = 2 \bmod 1 = 0 a1mod1=2mod1=0, and a 3 m o d 3 = 8 m o d 3 = 2 a_3 \bmod 3 = 8 \bmod 3 = 2 a3mod3=8mod3=2. So they are different.
  • For pair ( 2 , 3 ) (2, 3) (2,3), a 2 m o d 2 = 7 m o d 2 = 1 a_2 \bmod 2 = 7 \bmod 2 = 1 a2mod2=7mod2=1, and a 3 m o d 3 = 8 m o d 3 = 2 a_3 \bmod 3 = 8 \bmod 3 = 2 a3mod3=8mod3=2. So they are different.

Note that you do not necessarily have to print the exact same sequence, you can print any other sequence as long as it satisfies the necessary conditions.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n;cin >> n;std::vector<int> a(n);for (int i = 0; i < n; i ++)cin >> a[i];sort(a.begin(), a.end());int res = 0;for (int i = 1; i < n; i ++)if (a[i - 1] == a[i])res ++, i ++;cout << res << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

B. Shohag Loves Strings

Problem Statement

For a string p p p, let f ( p ) f(p) f(p) be the number of distinct non-empty substrings ∗ ^{\text{∗}} of p p p.

Shohag has a string s s s. Help him find a non-empty string p p p such that p p p is a substring of s s s and f ( p ) f(p) f(p) is even or state that no such string exists.

∗ ^{\text{∗}} A string a a a is a substring of a string b b b if a a a can be obtained from b b b by deletion of several (possibly, zero or all) characters from the beginning and several (possibly, zero or all) characters from the end.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first and only line of each test case contains a string s s s ( 1 ≤ ∣ s ∣ ≤ 1 0 5 1 \le |s| \le 10^5 1s105) consisting of lowercase English letters.

It is guaranteed that the sum of the length of s s s over all test cases doesn’t exceed 3 ⋅ 1 0 5 3 \cdot 10^5 3105.

Output

For each test case, print a non-empty string that satisfies the conditions mentioned in the statement, or − 1 -1 1 if no such string exists. If there are multiple solutions, output any.

Example

input
5
dcabaac
a
youknowwho
codeforces
bangladesh
output
abaa
-1
youknowwho
eforce
bang

Note

In the first test case, we can set $p = $ abaa because it is a substring of s s s and the distinct non-empty substrings of p p p are a, b, aa, ab, ba, aba, baa and abaa, so it has a total of 8 8 8 distinct substrings which is even.

In the second test case, we can only set $p = $ a but it has one distinct non-empty substring but this number is odd, so not valid.

In the third test case, the whole string contains 52 52 52 distinct non-empty substrings, so the string itself is a valid solution.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {string s;cin >> s;for (int i = 1; i < s.size(); i ++)if (s[i] == s[i - 1]) {cout << s[i - 1] << s[i] << endl;return;}if (s.size() >= 3) {for (int i = 2; i < s.size(); i ++)if (s[i - 2] != s[i]) {cout << s[i - 2] << s[i - 1] << s[i] << endl;return;}cout << -1 << endl;}else cout << -1 << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

C1. Shohag Loves XOR (Easy Version)

Problem Statement

This is the easy version of the problem. The differences between the two versions are highlighted in bold. You can only make hacks if both versions of the problem are solved.

Shohag has two integers x x x and m m m. Help him count the number of integers 1 ≤ y ≤ m 1 \le y \le m 1ym such that x ≠ y \mathbf{x \neq y} x=y and x ⊕ y x \oplus y xy is a divisor ∗ ^{\text{∗}} of either x x x, y y y, or both. Here ⊕ \oplus is the bitwise XOR operator.

∗ ^{\text{∗}} The number b b b is a divisor of the number a a a if there exists an integer c c c such that a = b ⋅ c a = b \cdot c a=bc.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first and only line of each test case contains two space-separated integers x x x and m m m ( 1 ≤ x ≤ 1 0 6 1 \le x \le 10^6 1x106, 1 ≤ m ≤ 1 0 18 1 \le m \le 10^{18} 1m1018).

It is guaranteed that the sum of x x x over all test cases does not exceed 1 0 7 10^7 107.

Output

For each test case, print a single integer — the number of suitable y y y.

Example

input
5
6 9
5 7
2 3
6 4
4 1
output
3
2
1
1
0

Note

In the first test case, for x = 6 x = 6 x=6, there are 3 3 3 valid values for y y y among the integers from 1 1 1 to m = 9 m = 9 m=9, and they are 4 4 4, 5 5 5, and 7 7 7.

  • y = 4 y = 4 y=4 is valid because x ⊕ y = 6 ⊕ 4 = 2 x \oplus y = 6 \oplus 4 = 2 xy=64=2 and 2 2 2 is a divisor of both x = 6 x = 6 x=6 and y = 4 y = 4 y=4.
  • y = 5 y = 5 y=5 is valid because x ⊕ y = 6 ⊕ 5 = 3 x \oplus y = 6 \oplus 5 = 3 xy=65=3 and 3 3 3 is a divisor of x = 6 x = 6 x=6.
  • y = 7 y = 7 y=7 is valid because x ⊕ y = 6 ⊕ 7 = 1 x \oplus y = 6 \oplus 7 = 1 xy=67=1 and 1 1 1 is a divisor of both x = 6 x = 6 x=6 and y = 7 y = 7 y=7.

In the second test case, for x = 5 x = 5 x=5, there are 2 2 2 valid values for y y y among the integers from 1 1 1 to m = 7 m = 7 m=7, and they are 4 4 4 and 6 6 6.

  • y = 4 y = 4 y=4 is valid because x ⊕ y = 5 ⊕ 4 = 1 x \oplus y = 5 \oplus 4 = 1 xy=54=1 and 1 1 1 is a divisor of both x = 5 x = 5 x=5 and y = 4 y = 4 y=4.
  • y = 6 y = 6 y=6 is valid because x ⊕ y = 5 ⊕ 6 = 3 x \oplus y = 5 \oplus 6 = 3 xy=56=3 and 3 3 3 is a divisor of y = 6 y = 6 y=6.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int x, m;cin >> x >> m;int cnt = 0;for (int y = 1; y <= x * 2; y ++)if (x != y && y <= m && (x % (x ^ y) == 0 || y % (x ^ y) == 0))cnt ++;cout << cnt << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

C2. Shohag Loves XOR (Hard Version)

Problem Statement

This is the hard version of the problem. The differences between the two versions are highlighted in bold. You can only make hacks if both versions of the problem are solved.

Shohag has two integers x x x and m m m. Help him count the number of integers 1 ≤ y ≤ m 1 \le y \le m 1ym such that x ⊕ y x \oplus y xy is divisible ∗ ^{\text{∗}} by either x x x, y y y, or both. Here ⊕ \oplus is the bitwise XOR operator.

∗ ^{\text{∗}} The number a a a is divisible by the number b b b if there exists an integer c c c such that a = b ⋅ c a = b \cdot c a=bc.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first and only line of each test case contains two space-separated integers x x x and m m m ( 1 ≤ x ≤ 1 0 6 1 \le x \le 10^6 1x106, 1 ≤ m ≤ 1 0 18 1 \le m \le 10^{18} 1m1018).

It is guaranteed that the sum of x x x over all test cases does not exceed 1 0 7 10^7 107.

Output

For each test case, print a single integer — the number of suitable y y y.

Example

input
5
7 10
2 3
6 4
1 6
4 1
output
3
2
2
6
1

Note

In the first test case, for x = 7 x = 7 x=7, there are 3 3 3 valid values for y y y among the integers from 1 1 1 to m = 10 m = 10 m=10, and they are 1 1 1, 7 7 7, and 9 9 9.

  • y = 1 y = 1 y=1 is valid because x ⊕ y = 7 ⊕ 1 = 6 x \oplus y = 7 \oplus 1 = 6 xy=71=6 and 6 6 6 is divisible by y = 1 y = 1 y=1.
  • y = 7 y = 7 y=7 is valid because x ⊕ y = 7 ⊕ 7 = 0 x \oplus y = 7 \oplus 7 = 0 xy=77=0 and 0 0 0 is divisible by both x = 7 x = 7 x=7 and y = 7 y = 7 y=7.
  • y = 9 y = 9 y=9 is valid because x ⊕ y = 7 ⊕ 9 = 14 x \oplus y = 7 \oplus 9 = 14 xy=79=14 and 14 14 14 is divisible by x = 7 x = 7 x=7.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int x, m;cin >> x >> m;int lo = 0, ro = (m + x - 1) / x, all = 1, ok;while (all <= x) all *= 2;all --;int lim = m <= all ? m : x * 2, res = 0;for (int i = 1; i <= min(m, lim); i ++)if ((i ^ x) % i == 0 && (i ^ x) % x != 0)res ++;if (m <= all) {for (int i = 1; i <= m; i ++)if ((i ^ x) % x == 0) res ++;cout << res << endl;return;}while (lo <= ro) {int mid = lo + ro >> 1;if (mid * x <= m && (m ^ (mid * x)) > all) lo = mid + 1, ok = mid;else ro = mid - 1;}res += ok + (ok == 0);// cout << ok << " " << res << endl;if ((((ok + 1) * x) ^ x) <= m) res ++;if ((((ok + 2) * x) ^ x) <= m) res ++;cout << res << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

D. Shohag Loves GCD

Problem Statement

Shohag has an integer n n n and a set S S S of m m m unique integers. Help him find the lexicographically largest ∗ ^{\text{∗}} integer array a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,,an such that a i ∈ S a_i \in S aiS for each 1 ≤ i ≤ n 1 \le i \le n 1in and a gcd ⁡ ( i , j ) ≠ gcd ⁡ ( a i , a j ) a_{\operatorname{gcd}(i, j)} \neq \operatorname{gcd}(a_i, a_j) agcd(i,j)=gcd(ai,aj) † ^{\text{†}} is satisfied over all pairs 1 ≤ i < j ≤ n 1 \le i \lt j \le n 1i<jn, or state that no such array exists.

∗ ^{\text{∗}} An array a a a is lexicographically larger than an array b b b of the same length if a ≠ b a \ne b a=b, and in the first position where a a a and b b b differ, the array a a a has a larger element than the corresponding element in b b b.

† ^{\text{†}} gcd ⁡ ( x , y ) \gcd(x, y) gcd(x,y) denotes the greatest common divisor (GCD) of integers x x x and y y y.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n and m m m ( 1 ≤ m ≤ n ≤ 1 0 5 1 \le m \le n \le 10^5 1mn105).

The second line contains m m m unique integers in increasing order, representing the elements of the set S S S ( 1 ≤ x ≤ n 1 \le x \le n 1xn for each x ∈ S x \in S xS).

It is guaranteed that the sum of n n n over all test cases does not exceed 3 ⋅ 1 0 5 3 \cdot 10^5 3105.

Output

For each test case, if there is no solution print − 1 -1 1, otherwise print n n n integers — the lexicographically largest integer array that satisfies the conditions.

Example

input
3
6 3
3 4 6
1 1
1
2 1
2
output
6 4 4 3 4 3
1
-1

Note

In the first test case, every element in the array belongs to the given set S = { 3 , 4 , 6 } S = \{3, 4, 6\} S={3,4,6}, and all pairs of indices of the array satisfy the necessary conditions. In particular, for pair ( 2 , 3 ) (2, 3) (2,3), a gcd ⁡ ( 2 , 3 ) = a 1 = 6 a_{\operatorname{gcd}(2, 3)} = a_1 = 6 agcd(2,3)=a1=6 and gcd ⁡ ( a 2 , a 3 ) = gcd ⁡ ( 4 , 4 ) = 4 \operatorname{gcd}(a_2, a_3) = \operatorname{gcd}(4, 4) = 4 gcd(a2,a3)=gcd(4,4)=4, so they are not equal. There are other arrays that satisfy the conditions as well but this one is the lexicographically largest among them.

In the third test case, there is no solution possible because we are only allowed to use a = [ 2 , 2 ] a = [2, 2] a=[2,2] but for this array, for pair ( 1 , 2 ) (1, 2) (1,2), a gcd ⁡ ( 1 , 2 ) = a 1 = 2 a_{\operatorname{gcd}(1, 2)} = a_1 = 2 agcd(1,2)=a1=2 and gcd ⁡ ( a 1 , a 2 ) = gcd ⁡ ( 2 , 2 ) = 2 \operatorname{gcd}(a_1, a_2) = \operatorname{gcd}(2, 2) = 2 gcd(a1,a2)=gcd(2,2)=2, so they are equal which is not allowed!

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n, m;cin >> n >> m;std::vector<int> S(m);for (auto &v : S) cin >> v;std::vector<int> ans(n + 1, m - 1);for (int i = 1; i <= n; i ++)for (int j = i + i; j <= n; j += i)ans[j] = min(ans[j], ans[i] - 1);for (int i = 1; i <= n; i ++)if (ans[i] < 0) {cout << -1 << endl;return;}for (int i = 1; i <= n; i ++)cout << S[ans[i]] << " ";cout << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

E. Shohag Loves Inversions

Problem Statement

Shohag has an array a a a of integers. Initially a = [ 0 , 1 ] a = [0, 1] a=[0,1]. He can repeatedly perform the following operation any number of times:

  • Let k k k be the number of inversions ∗ ^{\text{∗}} in the current array a a a.
  • Insert k k k at any position in a a a, including the beginning or the end.

For example, if a = [ 4 , 6 , 2 , 4 ] a = [4, 6, 2, 4] a=[4,6,2,4], then the number of inversions is k = 3 k = 3 k=3. So Shohag can obtain the following arrays after the operation: [ 3 , 4 , 6 , 2 , 4 ] [\textbf{3}, 4, 6, 2, 4] [3,4,6,2,4], [ 4 , 3 , 6 , 2 , 4 ] [4, \textbf{3}, 6, 2, 4] [4,3,6,2,4], [ 4 , 6 , 3 , 2 , 4 ] [4, 6, \textbf{3}, 2, 4] [4,6,3,2,4], [ 4 , 6 , 2 , 3 , 4 ] [4, 6, 2, \textbf{3}, 4] [4,6,2,3,4], and [ 4 , 6 , 2 , 4 , 3 ] [4, 6, 2, 4, \textbf{3}] [4,6,2,4,3].

Given an integer n n n, help Shohag count, modulo 998 244 353 998\,244\,353 998244353, the number of distinct arrays of length n n n that can be obtained after performing the operations.

∗ ^{\text{∗}} The number of inversions in an array a a a is the number of pairs of indices ( i i i, j j j) such that i < j i < j i<j and a i > a j a_i > a_j ai>aj.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first and only line of each test case contains an integer n n n ( 2 ≤ n ≤ 1 0 6 2 \le n \le 10^6 2n106).

It is guaranteed that the sum of n n n over all test cases does not exceed 1 0 6 10^6 106.

Output

For each test case, output an integer — the number of possible arrays modulo 998 244 353 998\,244\,353 998244353.

Example

input
4
4
2
7
69
output
5
1
682
325188814

Note

In the first test case, the following 5 5 5 arrays can be obtained (the inserted inversion count is shown in bold):

  • [ 0 , 1 ] → [ 0 , 0 , 1 ] → [ 0 , 0 , 1 , 0 ] [0, 1] \rightarrow [0, \textbf{0}, 1] \rightarrow [0, 0, 1, \textbf{0}] [0,1][0,0,1][0,0,1,0],
  • [ 0 , 1 ] → [ 0 , 0 , 1 ] → [ 0 , 0 , 0 , 1 ] [0, 1] \rightarrow [0, \textbf{0}, 1] \rightarrow [0, 0, \textbf{0}, 1] [0,1][0,0,1][0,0,0,1],
  • [ 0 , 1 ] → [ 0 , 1 , 0 ] → [ 0 , 1 , 0 , 1 ] [0, 1] \rightarrow [0, 1, \textbf{0}] \rightarrow [0, 1, 0, \textbf{1}] [0,1][0,1,0][0,1,0,1],
  • [ 0 , 1 ] → [ 0 , 1 , 0 ] → [ 0 , 1 , 1 , 0 ] [0, 1] \rightarrow [0, 1, \textbf{0}] \rightarrow [0, 1, \textbf{1}, 0] [0,1][0,1,0][0,1,1,0],
  • [ 0 , 1 ] → [ 0 , 1 , 0 ] → [ 1 , 0 , 1 , 0 ] [0, 1] \rightarrow [0, 1, \textbf{0}] \rightarrow [\textbf{1}, 0, 1, 0] [0,1][0,1,0][1,0,1,0].

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;void solve() {int n;cin >> n;std::vector<int> f(n + 1, 0);int mod = 998244353, sum = 0;for (int i = 3; i <= n; i ++) f[i] = 1;for (int i = 1; i <= n; i ++) {(f[i] += sum) %= mod;(sum += max(f[i] * i % mod - 1, 0ll)) %= mod;}int res = 1;for (int i = 1; i <= n; i ++) (res += f[i]) %= mod;cout << res << endl;
}signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int dt;cin >> dt;while (dt --)solve();return 0;
}

视频讲解

CodeTON Round 9 (Div. 1 + Div. 2, Rated, Prizes!)(A ~ E 题讲解)


最后祝大家早日在这里插入图片描述


http://www.ppmy.cn/embedded/141361.html

相关文章

学习笔记032——Spring学习笔记

文章目录 一、Spring开发步骤二、Spring配置文件1、Bean标签基本配置2、Bean标签范围配置3、Bean生命周期配置4、Bean实例化三种方式5、Bean的依赖注入概念6、Bean的依赖注入方式【第一种&#xff1a;set方法注入】【第二种&#xff1a;构造方法注入】 7、Bean的依赖注入的数据…

解锁Scala编程:深入文本分析与数据处理的艺术

引言&#xff1a; 在数据科学的世界里&#xff0c;Scala以其强大的并发能力和简洁的语法&#xff0c;成为处理大规模数据集的理想选择。本文将带您踏上一段Scala编程的探索之旅&#xff0c;从基础的文本分析到复杂的数据处理&#xff0c;每一步都精心设计&#xff0c;让您在实…

k8s rainbond centos7/win10 -20241124

参考 https://www.rainbond.com/ 国内一站式云原生平台 对centos7环境支持不太行 [lighthouseVM-16-5-centos ~]$ curl -o install.sh https://get.rainbond.com && bash ./install.sh 2024-11-24 09:56:57 ERROR: Ops! Docker daemon is not running. Start docke…

【FPGA-MicroBlaze】串口收发以及相关函数讲解

前言 工具&#xff1a;Vivado2018.3及其所对应的SDK版本 目前网上有许多MicroBlaze 的入门教程&#xff0c;比如下面的这个参考文章&#xff0c;用串口打印一个hello world。 【FPGA】Xilinx MicroBlaze软核使用第一节&#xff1a;Hello World!_fpga软核microblaze-CSDN博客 个…

基于事件驱动的业务规则模型设计

在现代数字化运营中&#xff0c;企业需要通过高效且灵活的系统来应对日益复杂的业务需求和用户期望。事件驱动的业务规则模型通过实时响应业务事件并执行预定义规则&#xff0c;实现积分发放、优惠券触发、分佣处理、流程审批等任务的自动化和智能化&#xff0c;从而为企业提升…

解读 Keep-Alive:CSDN 项目实例分析

Keep-Alive的理解 Keep-Alive 是一种网络通信中的机制,目的是保持一个持久的连接,在多个请求之间复用这个连接,而不是每次请求都重新建立新的连接。这个机制通常应用于HTTP协议中,称为 HTTP Keep-Alive(也叫 HTTP持久连接),它使得在客户端与服务器之间的通信过程中,能…

C++多线程——线程

1、线程与进程 进程是一个具有独立功能程序的运行实体&#xff0c;如某一个程序&#xff0c;运行时便产生一个进程&#xff1b;通常一个进程包含一个或多个线程。普通C程序多是只含有一个线程的进程&#xff0c;但是大多数情况下遇到的是多线程的进程。 线程与进程都是操作系统…

微信小程序全局配置:TabBar与页面配置详解

微信小程序全局配置:TabBar与页面配置详解 引言 随着移动互联网的迅猛发展,微信小程序作为一种新兴的应用形式,因其便捷性和丰富的功能而受到广泛欢迎。在小程序的开发过程中,全局配置是非常重要的一环,尤其是tabBar和页面的配置。本文将深入探讨微信小程序的全局配置,…