Python 网络爬虫操作指南

embedded/2024/11/27 9:39:34/

网络爬虫是自动化获取互联网上信息的一种工具。它广泛应用于数据采集、分析以及实现信息聚合等众多领域。本文将为你提供一个完整的Python网络爬虫操作指南,帮助你从零开始学习并实现简单的网络爬虫。我们将涵盖基本的爬虫概念、Python环境配置、常用库介绍。 

上传一个垂直爬虫框架方便大家学习https://download.csdn.net/download/vvvae1234/90026823?spm=1001.2014.3001.5503

第一部分:爬虫基础知识

1.1 什么是网络爬虫

网络爬虫(Web Crawler)是一种自动抓取网站信息的程序。不同于手动从网页上提取数据,爬虫可以高效、自动化地获取大量数据。

1.2 爬虫工作原理

  1. 发送请求:爬虫模拟浏览器发送HTTP请求到服务器。
  2. 获取响应:服务器处理请求并返回数据。
  3. 解析数据:爬虫使用解析库(如BeautifulSoup)对HTML内容进行解析和提取信息。
  4. 存储数据:将提取的数据保存到文件、数据库或其他存储系统。

1.3 爬虫的基本规范

在进行爬虫时需遵循一些基本规范,主要包括:

  • Robots.txt:许多网站会在其根目录下提供一个robots.txt文件,说明允许和禁止爬虫访问的部分。
  • 请求频率限制:为了防止给服务器带来过多负担,应设定合理的请求间隔。
  • 遵守法律法规:需确保遵循当地相关法律法规。

第二部分:环境配置

2.1 安装Python

确保你的计算机已安装Python(推荐使用Python 3.8及以上版本)。可以通过官网下载并安装:Python官网

2.2 安装必要的库

使用pip安装我们需要的库:

pip install requests beautifulsoup4
  • requests:用于发送HTTP请求。
  • beautifulsoup4:用于解析HTML和XML文档。

第三部分:爬虫实操案例

3.1 案例概述

我们将爬取一个新闻网站的标题和链接。这里以“http://news.ycombinator.com/”作为示例,该网站提供了最新的技术新闻。

3.2 编写代码

以下是一个基本的爬虫代码示例:

import requests
from bs4 import BeautifulSoupdef fetch_news():# 发送GET请求url = "https://news.ycombinator.com/"response = requests.get(url)if response.status_code == 200:# 解析HTML内容soup = BeautifulSoup(response.text, "html.parser")news_items = soup.find_all("a", class_="storylink")# 提取标题和链接for i, item in enumerate(news_items, start=1):title = item.get_text()link = item.get("href")print(f"{i}. {title}\n   链接: {link}\n")else:print("请求失败:", response.status_code)if __name__ == "__main__":fetch_news()

3.3 代码详解

  1. 导入库:我们导入了requestsBeautifulSoup库。
  2. 发送请求:使用requests.get()函数发送HTTP GET请求。
  3. 检查响应状态:如果响应状态为200(OK),则表示请求成功。
  4. 解析内容:使用BeautifulSoup解析返回的HTML文档。
  5. 提取信息:通过查找所有具有特定class属性的链接(storylink)来提取新闻标题和链接。
  6. 输出结果:将新闻标题和链接打印到控制台。

3.4 运行代码

将代码保存为news_crawler.py并在终端执行:

python news_crawler.py

上传一个垂直爬虫框架方便大家学习https://download.csdn.net/download/vvvae1234/90026823?spm=1001.2014.3001.5503

第四部分:数据存储

如果要将提取的数据存储到文件中,可以使用以下代码进行修改:

def fetch_news():url = "https://news.ycombinator.com/"response = requests.get(url)if response.status_code == 200:soup = BeautifulSoup(response.text, "html.parser")news_items = soup.find_all("a", class_="storylink")# 存储到文件with open("news.txt", "w", encoding="utf-8") as f:for item in news_items:title = item.get_text()link = item.get("href")f.write(f"{title}\n链接: {link}\n\n")print("新闻数据已保存到 news.txt 文件。")else:print("请求失败:", response.status_code)if __name__ == "__main__":fetch_news()

在这种情况下,提取的新闻将保存到news.txt中,每条新闻之间用换行分隔。

第五部分:进阶功能

5.1 添加异常处理

网络请求可能会失败,例如连接超时、404错误等。可以添加异常处理来提高代码的健壮性:

import requests
from bs4 import BeautifulSoupdef fetch_news():try:url = "https://news.ycombinator.com/"response = requests.get(url)response.raise_for_status()  # 检查请求是否成功soup = BeautifulSoup(response.text, "html.parser")news_items = soup.find_all("a", class_="storylink")for i, item in enumerate(news_items, start=1):title = item.get_text()link = item.get("href")print(f"{i}. {title}\n   链接: {link}\n")except requests.exceptions.RequestException as e:print("发生错误:", e)if __name__ == "__main__":fetch_news()

5.2 增加请求间隔

在爬取多个页面时,建议添加暂停,避免过于频繁的请求:

import time# 在循环中添加暂停
for i, item in enumerate(news_items, start=1):time.sleep(1)  # 添加暂停,单位为秒# 处理逻辑

第六部分:总结与扩展

通过本文的学习,你已经掌握了网络爬虫的基本知识、环境配置、编码示例及数据存储等操作。随着对爬虫技术的深入了解,你可以进一步探索:

  • 爬取动态网页的数据,使用Selenium库实现。
  • 存储爬取数据至数据库,如SQLite或MongoDB。
  • 实现更复杂的爬虫框架,如Scrapy。

网络爬虫是一个强大的工具,它为数据科学、商业分析等领域提供了广泛的应用可能。请务必在爬取时遵循网站的使用规则和法律法规,合法合规地使用爬虫技术。

最后上传一个垂直爬虫框架方便大家学习https://download.csdn.net/download/vvvae1234/90026823?spm=1001.2014.3001.5503


http://www.ppmy.cn/embedded/140863.html

相关文章

display相关的一些知识

1. DSI (MIPI DSI) 的 Video Mode 和 Command Mode MIPI DSI 是一种针对移动设备设计的显示接口,确实具有 Video Mode 和 Command Mode 的概念,这是它的一个显著特点: Video Mode 工作方式:数据流以固定的时间间隔传输帧缓冲内容…

【优先算法学习】双指针--结合题目讲解学习

目录 1.有效三角形的个数 1.2题目解题思路 1.3代码实现 2.和为s的两个数 2.1刷题链接-> 2.2题目解题思路 2.3代码实现 1.有效三角形的个数 1.1刷题链接-> 力扣-有效三角形的个数https://leetcode.cn/problems/valid-triangle-number/description/ 1.2题目解…

css—轮播图实现

一、背景 最近和朋友在一起讨论的时候,我们提出了这样的一个提问,难道轮播图的效果只能通过js来实现吗?经过我们的一系列的争论,发现了这是可以通过纯css来实现这一效果的,CSS轮播图也是一种常见的网页展示方式&#x…

JS原型、原型链以及原型链污染学习

文章目录 前置知识对象**三个重要属性:__proto__、prototype、constructor**JS原型与原型链继承 原型链污染Merge类操作原型链污染Lodash模块原型链污染lodash.defaultsDeep方法造成原型链污染lodash.merge 方法造成的原型链污染lodash.mergeWith 方法造成的原型链污…

ARM(安谋) China处理器

0 Preface/Foreword 0.1 参考博客 Cortex-M23/M33与STAR-MC1星辰处理器 ARM China,2018年4月established,独立运行。 1 处理器类型 1.1 周易AIPU 1.2 STAR-MC1(星辰处理器) STAT-MC1,主要为满足AIOT应用性能、功…

【含开题报告+文档+PPT+源码】基于SpringBoot的个性化推荐在线小说阅读网管理系统设计与实现

开题报告 随着互联网技术的快速发展和智能设备的普及,人们的阅读习惯正逐渐从传统的纸质书籍转向电子书籍。在线阅读以其便捷性、实时性和丰富性受到了广大读者的青睐。然而,现有的在线阅读平台在用户体验、资源管理和个性化推荐等方面仍存在一定的不足…

VITE+VUE3+TS环境搭建

前言(与搭建项目无关): 可以安装一个node管理工具,比如nvm,这样可以顺畅的切换vue2和vue3项目,以免出现项目跑不起来的窘境。我使用的nvm,当前node 22.11.0 目录 搭建项目 添加状态管理库&…

CentOS 上安装各种应用的命令行总结

在 CentOS 上安装各种应用的命令行方法可以通过不同的软件包管理工具完成,最常用的是 yum(CentOS 7及以前版本)和 dnf(CentOS 8及以上版本)。以下是一些常见应用的安装命令总结。 目录 1. 基本的包管理命令 2. 安装…