基于 RBF 神经网络整定的 PID 控制

embedded/2025/1/31 7:19:36/

基于 RBF 神经网络整定的 PID 控制 是结合了传统 PID 控制和 RBF(径向基函数)神经网络的自适应控制方法。在这种方法中,RBF 神经网络用于自适应地调整 PID 控制器的增益(比例增益 KpK_pKp​,积分增益 KiK_iKi​ 和微分增益 KdK_dKd​)。神经网络通过学习系统的误差信号及其变化,动态调整 PID 参数,从而提高控制系统的稳定性、响应速度和精度,尤其是在面对非线性、时变或复杂系统时。

1. RBF 神经网络概述

RBF 神经网络是一种前馈神经网络,其激活函数是径向基函数(通常是高斯函数)。RBF 神经网络通常由三层组成:

  • 输入层:接收外部输入信号。
  • 隐含层:包含多个神经元,每个神经元的输出是输入信号和中心向量的距离度量的函数(通常是高斯函数)。
  • 输出层:输出结果,用于预测或决策。

在基于 RBF 神经网络的 PID 控制中,RBF 网络通过误差和误差变化量来调整 PID 增益。

2. 基本原理

PID 控制器的输出公式为:

RBF 神经网络的目标是通过最小化控制误差来自动调整 PID 控制器的增益。通过误差和误差变化量作为输入,RBF 神经网络输出 PID 控制器的增益调整量。

3. 算法流程

  1. 初始化 PID 参数:设置初始的 PID 增益 KpK_pKp​、KiK_iKi​、KdK_dKd​。
  2. 计算误差和误差变化量:计算当前误差 e(t)e(t)e(t) 和误差变化量 Δe(t)=e(t)−e(t−1)\Delta e(t) = e(t) - e(t-1)Δe(t)=e(t)−e(t−1)。
  3. 训练 RBF 神经网络
    • 神经网络的输入为误差和误差变化量。
    • 输出为 PID 参数的调整量。
  4. 更新 PID 参数:根据神经网络输出的调整量,更新 PID 增益 KpK_pKp​、KiK_iKi​、KdK_dKd​。
  5. 计算控制信号:使用更新后的 PID 参数计算控制信号 u(t)u(t)u(t)。
  6. 迭代更新:在每次控制周期内,RBF 神经网络会根据新的误差和误差变化量继续调整 PID 参数。

4. C++ 实现基于 RBF 神经网络整定的 PID 控制

下面是一个简单的 C++ 实现,演示如何利用 RBF 神经网络来调整 PID 控制器的增益。

#include <iostream>
#include <vector>
#include <cmath>class RBFNeuralNetwork {
private:int input_size, hidden_size, output_size;double learning_rate;std::vector<std::vector<double>> centers;   // RBF中心std::vector<double> sigma;                  // RBF的宽度std::vector<std::vector<double>> weights;   // 隐藏层到输出层的权重std::vector<double> output;                 // 神经网络输出public:RBFNeuralNetwork(int input_size, int hidden_size, int output_size, double learning_rate = 0.01): input_size(input_size), hidden_size(hidden_size), output_size(output_size), learning_rate(learning_rate) {centers.resize(hidden_size, std::vector<double>(input_size));sigma.resize(hidden_size);weights.resize(hidden_size, std::vector<double>(output_size));output.resize(output_size);// 随机初始化RBF中心和宽度for (int i = 0; i < hidden_size; ++i) {for (int j = 0; j < input_size; ++j) {centers[i][j] = (rand() % 1000) / 1000.0;  // 随机初始化中心}sigma[i] = (rand() % 1000) / 1000.0 + 0.5;  // 随机初始化宽度}// 随机初始化权重for (int i = 0; i < hidden_size; ++i)for (int j = 0; j < output_size; ++j)weights[i][j] = (rand() % 1000) / 1000.0;}// 计算高斯基函数double gaussian_function(const std::vector<double>& x, const std::vector<double>& center, double sigma) {double sum = 0.0;for (int i = 0; i < x.size(); ++i)sum += pow(x[i] - center[i], 2);return exp(-sum / (2 * pow(sigma, 2)));}// 前向传播std::vector<double> forward(const std::vector<double>& input) {std::vector<double> hidden_output(hidden_size);// 计算每个隐含层神经元的输出for (int i = 0; i < hidden_size; ++i) {hidden_output[i] = gaussian_function(input, centers[i], sigma[i]);}// 计算输出层for (int i = 0; i < output_size; ++i) {output[i] = 0.0;for (int j = 0; j < hidden_size; ++j) {output[i] += hidden_output[j] * weights[j][i];}}return output;}// 反向传播void backward(const std::vector<double>& input, const std::vector<double>& target) {// 计算输出误差std::vector<double> output_error(output_size);for (int i = 0; i < output_size; ++i) {output_error[i] = target[i] - output[i];}// 更新权重for (int i = 0; i < output_size; ++i) {for (int j = 0; j < hidden_size; ++j) {weights[j][i] += learning_rate * output_error[i] * output[j];}}}
};class RBFNeuralNetworkPIDController {
private:double Kp, Ki, Kd;RBFNeuralNetwork rbf_network;public:RBFNeuralNetworkPIDController(double Kp_init, double Ki_init, double Kd_init): Kp(Kp_init), Ki(Ki_init), Kd(Kd_init), rbf_network(2, 5, 3) {}  // 输入:误差和误差变化,输出:Kp, Ki, Kd增益double compute(double setpoint, double actual) {double error = setpoint - actual;static double prev_error = 0;double delta_error = error - prev_error;prev_error = error;// 神经网络的输入为误差和误差变化量std::vector<double> input = { error, delta_error };std::vector<double> output = rbf_network.forward(input);// 使用神经网络输出调整PID增益Kp += output[0];Ki += output[1];Kd += output[2];// 计算控制信号double control_signal = Kp * error + Ki * error + Kd * delta_error;return control_signal;}
};int main() {RBFNeuralNetworkPIDController pid_controller(1.0, 0.1, 0.01);double setpoint = 10.0;double actual = 0.0;for (int step = 0; step < 50; ++step) {double control_signal = pid_controller.compute(setpoint, actual);actual += control_signal * 0.1;  // 假设控制信号对系统的影响std::cout << "Step: " << step << ", Control Signal: " << control_signal << ", Actual Output: " << actual << std::endl;}return 0;
}

5. 解释代码

  • RBFNeuralNetwork 类:该类实现了一个简单的 RBF 神经网络。输入为误差和误差变化量,输出为 PID 参数的调整量。网络使用高斯函数作为径向基函数来计算隐含层神经元的输出。
  • RBFNeuralNetworkPIDController 类:该类通过调用 RBF 神经网络来调整 PID 控制器的增益。神经网络根据误差和误差变化量输出 PID 参数的增益调整量,进而计算控制信号。

6. 总结

基于 RBF 神经网络整定的 PID 控制方法能够动态调整 PID 控制器的参数,以适应系统的变化,尤其在面对复杂的非线性系统时,它提供了一种有效的自适应控制方法。通过 RBF 神经网络的学习和训练,可以提高控制系统的性能,确保系统的稳定性和快速响应。


http://www.ppmy.cn/embedded/139341.html

相关文章

Jenkins + gitee 自动触发项目拉取部署(Webhook配置)

目录 前言 Generic Webhook Trigger 插件 下载插件 ​编辑 配置WebHook 生成tocken 总结 前言 前文简单介绍了Jenkins环境搭建&#xff0c;本文主要来介绍一下如何使用 WebHook 触发自动拉取构建项目&#xff1b; Generic Webhook Trigger 插件 实现代码推送后&#xff0c;触…

03-02、SpringCloud第二章,Eureka服务的注册与发现

SpringCloud从看不懂到放弃&#xff0c;第二章 一、Eureka服务的注册与发现 Eureka Netflix在设计Eureka时遵守的就是AP原则CAP原则又称CAP定理&#xff0c;指的是在一个分布式系统中&#xff0c;Consistency&#xff08;一致性&#xff09;、 Availability&#xff08;可用…

【漏洞复现】Wordpress Wholesale Market文件读取漏洞

漏洞描述 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律,遵守公共秩序,尊重社会公德,不得利用网络从事危害国家安全、荣誉和利益,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失…

51单片机基础05 实时时钟-思路及代码参考2、3

目录 一、思路二 1、原理图 2、代码 二、思路三 1、原理图 2、代码 一、思路二 所有设定功能相关的操作均在矩阵键盘进行实现&#xff0c;并在定时器中扫描、计数等 1、原理图 2、代码 #include <AT89X52.h> //调用51单片机的头文件 //------------------…

多传感器融合感知算法-后融合

1.传感器 需求分析 超声波 camera radar-多普勒效应 径向速度 车远离人&#xff0c;频率下降&#xff1b;车接近人&#xff0c;频率上升。速度变化会引起频率变化。 幅值不变&#xff0c;频率变化。 毫米波雷达为何那么多误检&#xff1f; 在频域中的阈值选取有关。取频域的峰…

AI Large Language Model

AI 的 Large Language model LLM , 大语言模型&#xff1a; 是AI的模型&#xff0c;专门设计用来处理自然语言相关任务。它们通过深度学习和庞大的训练数据集&#xff0c;在理解和生成自然语言文本方面表现出色。常见的 LLM 包括 OpenAI 的 GPT 系列、Google 的 PaLM 和 Meta…

uniapp vue3小程序报错Cannot read property ‘__route__‘ of undefined

在App.vue里有监听应用的生命周期 <script>// 只能在App.vue里监听应用的生命周期export default {onError: function(err) {console.log(AppOnError:, err); // 当 uni-app 报错时触发}} </script>在控制台打印里无意发现 Cannot read property ‘__route__‘ of …

Android开发实战班 - 网络编程 - WebSocket 实时通信

在现代应用开发中&#xff0c;实时通信是许多应用的核心功能之一&#xff0c;例如聊天应用、实时通知、在线游戏等。WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议&#xff0c;能够实现服务器与客户端之间的实时双向数据交换。相比于传统的 HTTP 请求&#xff0c;Web…