基于YOLOv8深度学习的医学影像阿尔兹海默症检测诊断系统研究与实现(PyQt5界面+数据集+训练代码)

embedded/2024/11/20 16:10:05/

阿尔茨海默症(Alzheimer’s disease)是一种常见的神经退行性疾病,主要表现为记忆丧失、认知能力下降以及行为和人格改变。随着全球老龄化问题的加剧,阿尔茨海默症的发病率也在逐年上升,给患者及其家庭带来了巨大的经济和心理负担。早期检测和诊断对于延缓疾病的进展、提高患者生活质量至关重要。然而,传统的诊断方式往往依赖于临床症状的观察和神经心理测试,可能无法及时发现早期的病理变化。因此,发展一种高效、准确的自动化检测系统成为医学研究的重点之一。

本文提出了一种基于YOLOV8深度学习算法的阿尔茨海默症检测与诊断系统,旨在通过医学影像实现阿尔茨海默症的自动化检测和早期诊断。YOLOV8作为一种先进的目标检测算法,具有极高的检测精度和实时性。我们充分利用其优势,将其应用于阿尔茨海默症的检测中,通过对大脑影像数据的分析,自动识别可能的病变区域。为此,我们构建了一个完整的系统框架,包括数据预处理、模型训练、推理和结果可视化等模块。

首先,我们选择了一个开源的医学影像数据集,涵盖了大量阿尔茨海默症患者和健康个体的脑部影像数据。通过对数据集进行清洗、标注和增强处理,我们确保了模型能够在训练过程中学习到有效的特征。接下来,基于YOLOV8模型,我们设计了适合医学影像特点的网络架构,对模型进行优化训练。在训练过程中,我们采用了交叉验证和超参数调优等技术,进一步提升了模型的检测精度和泛化能力。

此外,为了方便临床医生和研究人员的使用,我们开发了一个基于PyQt5的图形用户界面(GUI)。该界面友好且易于操作,用户可以通过界面加载医学影像,启动模型进行推理,并在界面上实时显示检测结果。检测到的病变区域将被标注在影像上,同时系统会生成详细的诊断报告,提供包括病变位置、大小和风险评分等关键信息。这一功能不仅提高了诊断效率,还为医生的决策提供了数据支持。

本文提出的检测系统在医学影像中能够高效、准确地识别阿尔茨海默症的病变区域。在多个测试数据集上,系统均表现出了较高的准确率和召回率,与现有的检测方法相比具有显著的优势。此外,系统的扩展性和实用性也得到了验证,其可通过进一步训练和调整,应用于其他神经退行性疾病的检测和分析。

总的来说,该基于YOLOV8深度学习的阿尔茨海默症检测与诊断系统为临床应用提供了一种自动化、智能化的工具,能够有效辅助医生进行早期诊断。未来,我们计划进一步扩展数据集的多样性,优化模型的性能,并在临床环境中进行实际测试,以提升系统的实用性和准确性。

算法流程

项目数据

通过搜集关于数据集为各种各样的阿尔兹海默症相关图像,并使用Labelimg标注工具对每张图片进行标注,分4个检测类别,分别是”SevereDemented”,”VeryMildDemented”,”MildDemented”,”NonDemented”,”ModerateDemented”。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

模型训练

模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一个SOTA模型,它建立在Yolo系列历史版本的基础上,并引入了新的功能和改进点,以进一步提升性能和灵活性,使其成为实现目标检测、图像分割、姿态估计等任务的最佳选择。其具体创新点包括一个新的骨干网络、一个新的Ancher-Free检测头和一个新的损失函数,可在CPU到GPU的多种硬件平台上运行。

YOLOv8是Yolo系列模型的最新王者,各种指标全面超越现有对象检测与实例分割模型,借鉴了Yolov5、Yolov6、YoloX等模型的设计优点,在全面提升改进Yolov5模型结构的基础上实现,同时保持了Yolov5工程化简洁易用的优势。

Yolov8模型网络结构图如下图所示:

2.数据集准备与训练

本研究使用了包含各种阿尔兹海默症相关图像的数据集,并通过Labelimg标注工具对每张图像中的目标边框(Bounding Box)及其类别进行标注。然后主要基于YOLOv8n这种模型进行模型的训练,训练完成后对模型在验证集上的表现进行全面的性能评估及对比分析。模型训练和评估流程基本一致,包括:数据集准备、模型训练、模型评估。本次标注的目标类别为阿尔兹海默症,数据集中共计包含3288张图像,其中训练集占2572张,验证集占716张。部分图像如下图所示:

部分标注如下图所示:

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入datasets目录下。

接着需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。
data.yaml的具体内容如下:

train: E:/Alzheimer’sDdiseaseObjective_v8/datasets/train/images 训练集的路径
val: E:/Alzheimer’sDdiseaseObjective_v8/datasets/val/images 验证集的路径
# test: E:/Alzheimer’sDdiseaseObjective_v8/datasets/test/images 测试集的路径

nc: 5 模型检测的类别数,共有5个类别。
names: [“SevereDemented”,”VeryMildDemented”,”MildDemented”,”NonDemented”,”ModerateDemented”]

这个文件定义了用于模型训练和验证的数据集路径,以及模型将要检测的目标类别。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小(根据内存大小调整,最小为1)。

CPU/GPU训练代码如下:

加载名为 yolov8n.pt 的预训练YOLOv8模型,yolov8n.pt是预先训练好的模型文件。
使用YOLO模型进行训练,主要参数说明如下:
(1)data=data_yaml_path: 指定了用于训练的数据集配置文件。
(2)epochs=150: 设定训练的轮数为150轮。
(3)batch=4: 指定了每个批次的样本数量为4。
(4)optimizer=’SGD’):SGD 优化器。
(7)name=’train_v8′: 指定了此次训练的命名标签,用于区分不同的训练实验。

3.训练结果评估

深度学习的过程中,我们通常通过观察损失函数下降的曲线来了解模型的训练情况。对于YOLOv8模型的训练,主要涉及三类损失:定位损失(box_loss)、分类损失(cls_loss)以及动态特征损失(dfl_loss)。训练完成后,相关的训练过程和结果文件会保存在 runs/ 目录下,具体如下:

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

训练结果如下:

这张图展示了YOLOv8模型在训练和验证过程中的多个重要指标的变化趋势,具体如下:

train/box_loss:
(1)这是训练过程中边界框损失的变化。边界框损失用于衡量模型预测的目标框与实际目标框的差异。
(2)随着训练的进行,损失值逐渐减少,表示模型在预测物体位置时的精度不断提高。

train/cls_loss:
(1)这是训练集上的分类损失。分类损失衡量模型对目标类别的预测准确性。
(2)表示模型在分类物体时的误差。损失值逐渐降低,说明模型的分类性能在不断提升。

train/dfl_loss:
(1)这是分布聚焦损失(distribution focal loss),用于帮助模型对目标框的精确定位。
(2)主要用于提高定位精度。下降趋势表明模型在定位物体时变得更加精确。

metrics/precision(B):
(1)这是训练集上的精度(precision)曲线。精度表示模型在检测到的目标中有多少是真正的目标。
(2)精确率接近1.0,表明模型的误报率较低。

metrics/recall(B):
(1)这是训练集上的召回率(recall)曲线。召回率表示模型检测出的真实目标的比例。
(2)召回率随着训练逐渐提高,表明模型检测出更多的真实物体。

val/box_loss:
(1)这是验证集上的边界框损失曲线。
(2)随着验证的进行,损失值逐渐下降,表示模型在未见过的数据上也能有效地预测物体位置。

val/cls_loss:
(1)这是验证集上的分类损失曲线。
(2)损失值降低表明模型在验证集上的分类性能也在提升。

val/dfl_loss:
(1)这是验证集上的分布聚焦损失曲线。
(2)下降趋势说明模型在未见过的数据上的定位性能有所提高。

metrics/mAP50(B):
(1)这是验证集上的mAP50曲线,表示在交并比阈值为0.5时模型的平均精度(mean Average Precision)。
(2)随着训练的进行,mAP值提高,表示模型在检测物体时的准确性不断提高。

metrics/mAP50-95(B):
(1)这是验证集上的mAP50-95曲线,表示在不同交并比阈值(从0.5到0.95)下模型的平均精度。
(2)这是衡量模型综合检测性能的指标。数值逐渐上升,表明模型在各个IoU阈值下的表现都在提升。

该图展示了模型在不同阶段的训练和验证性能,表明模型训练得到了良好的效果并在验证集上取得了不错的表现。

这张图展示的是 Precision-Recall 曲线,用于评估模型在不同类别下的检测性能。以下是详细解释:

PR曲线分析:
1.每种颜色代表一个不同的类别,具体如下:
(1)SevereDemented(严重痴呆):0.993
(2)VeryMildDemented(非常轻微痴呆):0.985
(3)MildDemented(轻微痴呆):0.976
(4)NonDemented(非痴呆):0.982
(5)ModerateDemented(中度痴呆):0.995
2.所有类别(粗蓝线)显示了所有类别的整体性能,平均精确度(mAP)为0.986(IoU阈值为0.5)。

曲线行为:
(1)较高的精确率和召回率(接近1.0) 表明模型的检测性能良好。
(2)对于每个类别,曲线接近图表的右上角,这表明模型在所有痴呆阶段的检测中,精确率和召回率都表现得很好。
(3)曲线越接近右上角(精确率和召回率都为1.0),性能越好。所有类别的曲线都接近理想区域。

SevereDemented(严重痴呆)和ModerateDemented(中度痴呆)类别的精确率和召回率得分最高,表明模型在检测这些阶段时表现尤为出色。
模型在所有类别中的表现都很稳定,mAP@0.5为0.986,这表明它能够以较高的置信度准确检测阿尔茨海默病的不同阶段。

4.检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。
imgTest.py 图片检测代码如下:

加载所需库:
(1)from ultralytics import YOLO:导入YOLO模型类,用于进行目标检测。
(2)import cv2:导入OpenCV库,用于图像处理和显示。

加载模型路径和图片路径:
(1)path = ‘models/best.pt’:指定预训练模型的路径,这个模型将用于目标检测任务。
(2)img_path = “TestFiles/0229.png”:指定需要进行检测的图片文件的路径。

加载预训练模型:
(1)model = YOLO(path, task=’detect’):使用指定路径加载YOLO模型,并指定检测任务为目标检测 (detect)。
(2)通过 conf 参数设置目标检测的置信度阈值,通过 iou 参数设置非极大值抑制(NMS)的交并比(IoU)阈值。

检测图片:
(1)results = model(img_path):对指定的图片执行目标检测,results 包含检测结果。

显示检测结果:
(1)res = results[0].plot():将检测到的结果绘制在图片上。
(2)cv2.imshow(“YOLOv8 Detection”, res):使用OpenCV显示检测后的图片,窗口标题为“YOLOv8 Detection”。
(3)cv2.waitKey(0):等待用户按键关闭显示窗口

此代码的功能是加载一个预训练的YOLOv8模型,对指定的图片进行目标检测,并将检测结果显示出来。

执行imgTest.py代码后,会将执行的结果直接标注在图片上,结果如下:

这段输出是基于YOLOv8模型对图片“imagetest.jpg”进行检测的结果,具体内容如下:

图像信息:
(1)处理的图像路径为:TestFiles/imagetest.jpg。
(2)图像尺寸为 640×640 像素。

检测结果:
(1)模型在该图片上检测到 1 个严重痴呆(”1 SevereDemented”)

处理速度:
(1)预处理时间: 14.4 毫秒
(2)推理时间: 5.0 毫秒
(3)后处理时间: 168.1 毫秒

模型在处理图片时非常高效,成功检测出 1 个看屏幕实例,并将结果保存到了指定目录。

运行效果

– 运行 MainProgram.py

1.主要功能:
(1)可用于实时检测目标图片中的阿尔兹海默症;
(2)支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
(3)界面可实时显示目标位置、目标总数、置信度、用时等信息;
(4)支持图片或者视频的检测结果保存。

2.检测结果说明:

这张图表显示了基于YOLOv8模型的目标检测系统的检测结果界面。以下是各个字段的含义解释:

用时(Time taken):
(1)这表示模型完成检测所用的时间为0.009秒。
(2)这显示了模型的实时性,检测速度非常快。

目标数目(Number of objects detected):
(1)检测到的目标数目为1,表示这是当前检测到的第1个目标。

目标选择(下拉菜单):全部:
(1)这里有一个下拉菜单,用户可以选择要查看的目标类型。
(2)在当前情况下,选择的是“全部”,意味着显示所有检测到的目标信息。

类型(Type):
(1)当前选中的行为类型为 “中度痴呆”,表示系统正在高亮显示检测到的“ModerateDemented”。

置信度(Confidence):
(1)这表示模型对检测到的目标属于“中度痴呆”类别的置信度为98.74%。
(2)置信度反映了模型的信心,置信度越高,模型对这个检测结果越有信心。

目标位置(Object location):
(1)xmin: 2, ymin: 0:目标的左上角的坐标(xmin, ymin),表示目标区域在图像中的位置。
(2)xmax: 1078, ymax: 1075:目标的右下角的坐标(xmax, ymax),表示目标区域的边界。

这些坐标表示在图像中的目标区域范围,框定了检测到的“中度痴呆”的位置。

这张图展示了阿尔兹海默症的一次检测结果,包括检测时间、检测到的种类、各行为的置信度、目标的位置信息等。用户可以通过界面查看并分析检测结果,提升阿尔兹海默症检测诊断的效率。

3.图片检测说明
(1)极轻度痴呆

(2)轻度痴呆

(3)无痴呆

(4)中度痴呆

(5)重度痴呆

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹。
操作演示如下:
(1)点击目标下拉框后,可以选定指定目标的结果信息进行显示。
(2)点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下。

检测结果:系统识别出图片中的阿尔兹海默症,并显示检测结果,包括总目标数、用时、目标类型、置信度、以及目标的位置坐标信息。

4.视频检测说明

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。
点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

检测结果:系统对视频进行实时分析,检测到阿尔兹海默症并显示检测结果。表格显示了视频中多个检测结果的置信度和位置信息。

这个界面展示了系统对视频帧中的多目标检测能力,能够准确识别阿尔兹海默症,并提供详细的检测结果和置信度评分。

5.摄像头检测说明

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。

检测结果:系统连接摄像头进行实时分析,检测到阿尔兹海默症并显示检测结果。实时显示摄像头画面,并将检测到的行为位置标注在图像上,表格下方记录了每一帧中检测结果的详细信息。

6.保存图片与视频检测说明

点击保存按钮后,会将当前选择的图片(含批量图片)或者视频的检测结果进行保存。
检测的图片与视频结果会存储在save_data目录下。
保存的检测结果文件如下:

图片文件保存的csv文件内容如下,包括图片路径、目标在图片中的编号、目标类别、置信度、目标坐标位置。
注:其中坐标位置是代表检测框的左上角与右下角两个点的x、y坐标。

(1)图片保存

(2)视频保存

– 运行 train.py
1.训练参数设置

(1)data=data_yaml_path: 使用data.yaml中定义的数据集。
(2)epochs=150: 训练的轮数设置为150轮。
(3)batch=4: 每个批次的图像数量为4(批次大小)。
(4)name=’train_v8′: 训练结果将保存到以train_v8为名字的目录中。
(5)optimizer=’SGD’: 使用随机梯度下降法(SGD)作为优化器。

虽然在大多数深度学习任务中,GPU通常会提供更快的训练速度。
但在某些情况下,可能由于硬件限制或其他原因,用户需要在CPU上进行训练。

温馨提示:在CPU上训练深度学习模型通常会比在GPU上慢得多,尤其是像YOLOv8这样的计算密集型模型。除非特定需要,通常建议在GPU上进行训练以节省时间。

2.训练日志结果

这张图展示了使用YOLOv8进行模型训练的详细过程和结果。

训练总时长:
(1)模型在训练了150轮后,总共耗时1.550小时。

性能指标:
(1)Box(P): 是边界框的预测精度,表示模型在检测目标时,预测的边界框与实际边界框的重合程度。最终的Box(P)为0.928,表示模型在边界框预测上有很高的精度。
(2)Recall (R): 召回率,表示模型能够识别出所有实际目标的比例,最终的召回率为0.921,表明模型可以成功检测出大多数目标。
(3)mAP@50: 这是平均精度的一个指标,表示在IoU阈值为50%的情况下,模型在不同类别上的检测精度。最终的mAP@50为0.949,表示整体检测精度较高。
(4)mAP@50-95: 是更严格的平均精度指标,覆盖了从50%到95%的IoU阈值。最终的mAP@50-95为0.787,表明在较严格的评估条件下模型依然表现较好。

类别性能:
(1)Crossing legs(翘腿)、Using a phone(使用手机)等行为的检测精度和召回率都很高,分别达到了0.984和0.974。
(2)其他行为如Teaching or asking(教学)、Writing(写字)、Guiding students(指导学生)的表现也不错,但相较于前两类行为,mAP@50-95略低。

速度:
(1)每张图像的处理时间,包括预处理、推理和后处理,分别为0.2ms(预处理)、1.4ms(推理)和0.8ms(后处理),说明系统具有较好的实时性。

结果保存:
(1)Results saved to runs\detect\train_v8:验证结果保存在 runs\detect\train_v8 目录下。

完成信息:
(1)Process finished with exit code 0:表示整个验证过程顺利完成,没有报错。

该图展示了YOLOv8模型在阿尔兹海默症检测任务上的优秀性能,尤其在多类别行为的检测中表现出色,模型可以较为准确地识别不同的阿尔兹海默症,且在推理速度上也具备较好的实时性。


http://www.ppmy.cn/embedded/139118.html

相关文章

安宝特分享 | 如何利用AR技术革新医疗实践:从远程急救到多学科协作

AR技术在国内外医院的应用 在现代医疗环境中,患者面临的挑战依然严峻:看病难、看病远、看病急。这些问题不仅影响了患者的治疗效果,也让医务工作者倍感压力。幸运的是,随着增强现实(AR)技术的发展&#xf…

前端全屏显示解决方案分享

本文分享的内容是前端全屏显示的解决方案,来源于103项目中的需求。主要是将开发过程中遇到问题,解决问题的思路分享出来,对于后面遇到相同的业务场景时可以借鉴一下,提高我们的开发效率,少走一些弯路。 需求背景 用户…

单片机的基本组成与工作原理

单片机(Microcontroller Unit, MCU)是一种将计算机的主要部分集成在一个芯片上的小型计算机系统。它通常包括中央处理器(CPU)、存储器(Memory)、输入输出接口(I/O Ports)、定时器/计…

【UGUI】Unity 游戏开发:背包系统初始化克隆道具

在游戏开发中,背包系统是一个非常常见的功能模块。它允许玩家收集、管理和使用各种道具。今天,我们将通过一个简单的示例来学习如何在 Unity 中初始化一个背包系统。我们将使用 Unity 2021.3.7 版本,并结合 C# 脚本来实现这一功能。 1. 场景…

PH热榜 | 2024-11-19

DevNow 是一个精简的开源技术博客项目模版,支持 Vercel 一键部署,支持评论、搜索等功能,欢迎大家体验。 在线预览 1. Layer 标语:受大脑启发的规划器 介绍:体验一下这款新一代的任务和项目管理系统吧!它…

25. 架构能力

文章目录 第25章 架构能力25.1 个人能力:架构师的职责、技能和知识职责技能知识那经验方面呢? 25.2 软件架构组织的能力25.3 成为更优秀的架构师接受指导指导他人 25.4 小结25.5 扩展阅读25.6 问题讨论 第25章 架构能力 人生苦短,学海无涯。 …

借助Excel实现Word表格快速排序

实例需求:Word中的表格如下图所示,为了强化记忆,希望能够将表格内容随机排序,表格第一列仍然按照顺序编号,即编号不跟随表格行内容调整。 乱序之后的效果如下图所示(每次运行代码的结果都不一定相同&#x…

如何在 Python 中判断 ADB 设备是否连接

在进行 Android 自动化测试时,使用 ADB (Android Debug Bridge) 与设备进行交互是常见的做法。通常我们需要确认 ADB 是否连接到设备,然后才能执行后续的测试操作。本文将介绍如何在 Python 中检查 adb devices 命令的输出,判断是否有设备连接。 1. 什么是 adb devices 命令…