ML 系列: 第 23 节 — 离散概率分布 (多项式分布)

embedded/2024/11/20 11:44:43/

目录

一、说明

二、多项式分布公式

2.1 多项式分布的解释

2.2 示例

2.3 特殊情况:二项分布

2.4 期望值 (Mean)

2.5 方差

三、总结

3.1 python示例


一、说明

伯努利分布对这样一种情况进行建模:随机变量可以采用两个可能的值(通常为 0 和 1)之一,表示二进制结果。此分发适用于单个试用版。当此二元实验重复 n 次时,得到的分布称为二项分布。

以类似的方式,Multinoulli 分布(或分类分布)将概念扩展到单个试验的 k 种可能结果。当具有 k 个结果的实验重复 n 次时,我们得到多项式分布。因此,多项分布描述了 n 次独立试验的结果,每项试验都遵循 Multinoulli 分布。

二、多项式分布公式

多项式分布的概率质量函数由下式给出:

哪里:

2.1 多项式分布的解释

  1. Number of Trials (n): This represents the total number of experiments or trials conducted.
  2. Possible Outcomes (k): Each trial can result in one of k possible outcomes. For example, if you roll a die, there are 6 possible outcomes (1 through 6).
  3. Outcome Counts (𝑥𝑖​): These are the counts of each outcome over the 𝑛n trials. For example, if you roll a die 10 times and get three 1’s, two 2’s, one 3, zero 4’s, three 5’s, and one 6, then 𝑥1=3, 𝑥2=2, 𝑥3=1, 𝑥4=0, 𝑥5=3, and 𝑥6=1.
  4. Outcome Probabilities (pi​): These are the probabilities of each outcome occurring in a single trial. For a fair die, 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 𝑝5 = 𝑝6 = 1/6
  5. Factorial Terms:
  • 𝑛!(n factorial) is the product of all positive integers up to n.
  • xi​! (x_i factorial) is the product of all positive integers up to xi​.

6. Probability Calculation:

2.2 示例

假设你进行了一个将一个公平的6面模具滚动10次的实验,你想找到这种情况下的概率:

此表指的是获得三个1、两个2、一个3、零4、三个5和一个6。在这里:

  • = 10
  • k = 6
  • x1 = 3, x2 = 2, x3 = 1, x4 = 0, x5 = 3, x6 = 1
  • p1 = p2 = p3 = p4 = p5 = p6 = 1/6

将这些代入公式中:

简化此操作可得到:

计算阶乘和最终概率:

因此,这个特定结果的概率约为 0.00021

2.3 特殊情况:二项分布

当 = 2 时,多项式分布简化为二项式分布。让我们看看它是如何工作的:

对于 k = 2:

  • x1 = x 和 x2 = n−x
  • p1 = p 和 p2 = 1−p

多项式公式变为:

这正是二项分布公式:

2.4 期望值 (Mean)

多项式分布中每个随机变量  的期望值 E[习] 由下式给出:

这意味着结果 i 出现的预期次数是试验总数 n 和结果 i pi 的概率的乘积。

2.5 方差

多项式分布中每个随机变量  的方差 Var(习) 由下式给出:

该公式表示结果 i 在其平均值附近出现的次数的可变性或分布。

三、总结

下面是一个汇总表,它根据参数 k 和 n 比较了伯努利分布、多重分布、二项式分布和多项式分布:

3.1 python示例

        绘制给定实验的分布图(将不公平的 6 面骰子掷 10 次并观察结果的具体计数):

import matplotlib.pyplot as plt# Data
n = 10
outcomes = [1, 2, 3, 4, 5, 6]
counts = [3, 2, 1, 0, 3, 1]# Define probabilities for an unfair dice
probabilities_unfair = [0.1, 0.1, 0.2, 0.1, 0.3, 0.2]  # Plotting
fig, ax1 = plt.subplots(figsize=(10, 6))# Bar plot for counts
ax1.bar(outcomes, counts, color='b', alpha=0.6, label='Counts')
ax1.set_xlabel('Outcomes')
ax1.set_ylabel('Counts', color='b')
ax1.set_xticks(outcomes)
ax1.set_title(f'Distribution of Rolling an Unfair 6-Sided Die {n} Times')# Line plot for probabilities (unfair)
ax2 = ax1.twinx()
ax2.plot(outcomes, probabilities_unfair, color='r', marker='o', linestyle='dashed', label='Probabilities (Unfair)')
ax2.set_ylabel('Probabilities (Unfair)', color='r')# Adding legends
ax1.legend(loc='upper left')
ax2.legend(loc='upper right')plt.show()

这是代码的输出:

        在机器学习系列的第 23节,我们探索了多项式分布,了解了它在多次试验中具有多种结果的场景中的应用。


http://www.ppmy.cn/embedded/139064.html

相关文章

【Java Web】Ajax 介绍及 jQuery 实现

文章目录 AJAX介绍XMLHttpRequestjQuery实现Ajax$.ajax()$().load()$.get()$.post() AJAX介绍 AJAX(Asynchronous JavaScript and XML)是一种创建高效、动态网页应用的网页开发技术。它允许在不重新加载整个页面的情况下进行异步数据更新和交互&#xf…

torch.utils.data.dataset 的数据组织形式——python list、dict、tuple内存消耗量

在Pytorch中,我们需要通过torch.utils.data.dataset来实现数据的读取。torch.utils.data.dataset是一种非流式的数据读取策略,需要将数据一次性导入至内存中.如果数据规模过大,可能存在内存不够的问题。 import torch from torch.utils.data…

Spark使用过程中的 15 个常见问题、详细解决方案

目录 问题 1:Spark 作业超时问题描述解决方案Python 实现 问题 2:内存溢出问题描述解决方案Python 实现 问题 3:Shuffle 性能问题问题描述解决方案Python 实现 问题 4:Spark 作业调度不均问题描述解决方案Python 实现 问题 5&…

美创科技膺选CNVD技术组支撑单位!

国家信息安全漏洞共享平台(CNVD)发布安全公告(编号:CNTA-2024-0019),宣布新增八家支撑单位。美创科技凭借数据安全领域的技术实力和专业服务能力,顺利通过支撑能力候选考察,首次获得…

SQL 语句优化及编程方法

DBMS生成的执行计划在很大程度上要受到代码外部结构的影响。因此要想优化查询性能,就必须要知道如何写代码才能使优化器的执行效率更高。 但是,不能为了“效率”牺牲代码的可读性,要让代码清晰。 1 查询优化 在解决SQL造成的性能问题时&am…

Redis面试篇笔记(持续更新)

一、redis主从集群 单节点redis的并发能力是由上限的,要进一步提高redis的并发能力可以搭建主从集群,实现读写分离,一主多从,主节点写数据,从节点读数据 部署redis主从节点的docker-compose文件命令解析 version: &q…

基于单片机的厂房防火报警系统

本设计基于单片机的厂房防火报警系统,选用STC89C52RC作为核心的控制芯片,并且使用GSM技术来控制各种传感器,来实现多功能、多方面的安全监测。其中传感器主要包括:烟雾传感器、火焰传感器和温度传感器。主控芯片与这些传感器&…

【软件工程】一篇入门UML建模图(类图)

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀软件开发必练内功_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前…