YOLOv10改进策略【注意力机制篇】| MCAttention 多尺度交叉轴注意力

embedded/2024/10/10 22:50:13/

一、本文介绍

本文记录的是基于MCA注意力模块的YOLOv10目标检测改进方法研究。普通的轴向注意力难以实现长距离交互,不利于捕获分割任务中所需的空间结构或形状,而MCA注意力模块通过构建了两个并行轴向注意力之间的交互,更有效地利用多尺度特征和全局上下文,在改进YOLOv10的过程中,能够契合目标形态,更有效的获取目标的全局信息。

文章目录

  • 一、本文介绍
  • 二、MCANet原理
    • 2.1 MCA的原理:
    • 2.2 MCA的优势:
  • 三、MCA的实现代码
  • 四、添加步骤
    • 4.1 改进点1
    • 4.2 改进点2⭐
  • 五、添加步骤
    • 5.1 修改ultralytics/nn/modules/block.py
    • 5.2 修改ultralytics/nn/modules/__init__.py
    • 5.3 修改ultralytics/nn/modules/tasks.py
  • 六、yaml模型文件
    • 6.1 模型改进版本一
    • 6.2 模型改进版本二⭐
  • 七、成功运行结果


二、MCANet原理

MCANet:基于多尺度交叉轴关注的医学图像分割

MCANet(Medical Image Segmentation with Multi - Scale Cross - Axis Attention)是一种用于医学图像分割的网络,其核心组件是多尺度交叉轴注意力(Multi - Scale Cross - Axis Attention,MCA)

2.1 MCA的原理:

  1. 回顾轴向注意力
    • 轴向注意力将自注意力分解为两个部分,分别负责沿水平或垂直维度计算自注意力,基于此,Axial - DeepLab可沿水平和垂直方向依次聚合特征,使捕获全局信息成为可能。
    • 轴向注意力比自注意力更高效,计算复杂度从 O ( H W × H W ) O(HW \times HW) O(HW×HW)降低到 O ( H W × ( H + W ) ) O(HW \times (H + W)) O(HW×(H+W))
    • 但在许多医学图像分割任务中,数据集相对较小,轴向注意力难以实现长距离交互,不利于捕获分割任务中所需的空间结构或形状。
  2. 多尺度交叉轴注意力
    • MCA结构分为两个并行分支,分别计算水平和垂直轴向注意力,每个分支由三个不同核大小的1D卷积组成,用于沿一个空间维度编码多尺度上下文信息,随后通过交叉轴注意力沿另一个空间维度聚合特征。
    • 以顶部分支为例,给定特征图 F F F(编码器最后三个阶段特征图的组合),使用三个并行的1D卷积对其进行编码,输出通过求和融合并送入一个 1 × 1 1\times1 1×1卷积,公式为 F x = C o n v 1 × 1 ( ∑ i = 0 2 C o n v 1 D i x ( N o r m ( F ) ) ) F_{x} = Conv_{1\times1}\left(\sum_{i = 0}^{2}Conv1D_{i}^{x}(Norm(F))\right) Fx=Conv1×1(i=02Conv1Dix(Norm(F))),其中 C o n v 1 D i x ( ⋅ ) Conv1D_{i}^{x}(\cdot) Conv1Dix()表示沿 x x x轴维度的1D卷积, N o r m ( ⋅ ) Norm(\cdot) Norm()是层归一化, F x F_{x} Fx是输出。对于1D卷积的核大小,设置为 1 × 7 1\times7 1×7 1 × 11 1\times11 1×11 1 × 21 1\times21 1×21。底部分支的输出 F y F_{y} Fy可通过类似方式得到。
    • 对于顶部分支的 F x F_{x} Fx,将其送入 y y y轴注意力,为更好地利用来自两个空间方向的多尺度卷积特征,计算 F x F_{x} Fx F y F_{y} Fy之间的交叉注意力,具体将 F x F_{x} Fx作为键和值矩阵, F y F_{y} Fy作为查询矩阵,计算过程为 F T = M H C A y ( F y , F x , F x ) F_{T} = MHCA_{y}(F_{y}, F_{x}, F_{x}) FT=MHCAy(Fy,Fx,Fx),其中 M H C A y ( ⋅ , ⋅ , ⋅ ) MHCA_{y}(\cdot, \cdot, \cdot) MHCAy(,,)表示沿 x x x轴的多头交叉注意力。底部分支以类似方式编码沿 y y y轴方向的上下文,即 F B = M H C A x ( F x , F y , F y ) F_{B} = MHCA_{x}(F_{x}, F_{y}, F_{y}) FB=MHCAx(Fx,Fy,Fy),其中 M H C A x ( ⋅ , ⋅ , ⋅ ) MHCA_{x}(\cdot, \cdot, \cdot) MHCAx(,,)表示沿 y y y轴的多头交叉注意力。
    • MCA的输出为 F o u t = C o n v 1 × 1 ( F T ) + C o n v 1 × 1 ( F B ) + F F_{out} = Conv_{1\times1}(F_{T}) + Conv_{1\times1}(F_{B}) + F Fout=Conv1×1(FT)+Conv1×1(FB)+F

在这里插入图片描述

2.2 MCA的优势:

  1. 引入轻量级多尺度卷积:处理病变区域或器官各种大小和形状的有效方式。
  2. 创新的注意力机制:与大多数以前的工作不同,MCA不直接应用轴向注意力来捕获全局上下文,而是构建两个并行轴向注意力之间的交互,更有效地利用多尺度特征和全局上下文。
  3. 解码器轻量级:微小型号的模型参数数量仅为 0.14 M 0.14M 0.14M,更适合实际应用场景。

论文:https://arxiv.org/pdf/2312.08866v1
源码:https://github.com/haoshao-nku/medical_seg

三、MCA的实现代码

MCA模块的实现代码如下:

class StdPool(nn.Module) :def __init__(self):super(StdPool, self).__init__()def forward (self, x):b, c, _, _ = x.size()std = x.view(b, c, -1).std(dim=2, keepdim=True)std = std.reshape(b, c, 1, 1)return stdclass MCAGate (nn.Module):def __init__(self, k_size, pool_types=['avg', 'std']):super(MCAGate, self).__init__()self.pools = nn.ModuleList([])for pool_type in pool_types:if pool_type == 'avg':self.pools.append(nn.AdaptiveAvgPool2d(1))elif pool_type == 'max':self.pools.append(nn.AdaptiveMaxPool2d(1))elif pool_type == 'std':self.pools.append(StdPool())else:raise NotImplementedErrorself.conv = nn.Conv2d(1, 1, kernel_size=(1, k_size),  stride=1, padding=(0, (k_size - 1) // 2), bias=False)self.sigmoid = nn.Sigmoid()self.weight = nn.Parameter(torch.rand(2))def forward(self, x):feats = [pool(x) for pool in self.pools]if len(feats) == 1:out = feats[0]elif len(feats) == 2:weight = torch.sigmoid(self.weight)out = 1/2*(feats[0] + feats[1]) + weight[0] * feats[0] + weight[1] * feats[1]else:assert False, "特征提取异常"out = out.permute(0, 3, 2, 1).contiguous()out = self.conv(out)out = out.permute(0, 3, 2, 1).contiguous()out = self.sigmoid(out)out = out.expand_as(x)return x * outclass MCA(nn.Module):def __init__(self, channel, no_spatial=False): """Constructs a MCA module.Args:inp: Number of channels of the input feature mapsno_spatial: whether to build channel dimension interactions"""super(MCA, self).__init__()lambd = 1.5gamma = 1temp = round(abs((math.log2(channel) - gamma) / lambd))kernel = temp if temp % 2 else temp - 1self.h_cw = MCAGate(3)self.w_hc = MCAGate(3)self.no_spatial = no_spatialif not no_spatial:self.c_hw = MCAGate(kernel)def forward(self, x):x_h = x.permute(0, 2, 1, 3).contiguous()x_h = self.h_cw(x_h)x_h = x_h.permute(0, 2, 1, 3).contiguous() x_w = x.permute(0, 3, 2, 1).contiguous()x_w = self.w_hc(x_w)x_w = x_w.permute(0, 3, 2, 1).contiguous() if not self.no_spatial:   x_c = self.c_hw(x)x_out = 1 / 3 * (x_c + x_h + x_w)else:x_out = 1 / 2 * (x_h + x_w)return x_out

四、添加步骤

4.1 改进点1

模块改进方法1️⃣:直接加入MCA模块
MCA模块添加后如下:

在这里插入图片描述

注意❗:在5.2和5.3小节中需要声明的模块名称为:MCA

4.2 改进点2⭐

模块改进方法2️⃣:基于MCA模块C2f

相较方法一中的直接插入注意力模块,利用注意力模块对卷积等其他模块进行改进,其新颖程度会更高一些,训练精度可能会表现的更高。

第二种改进方法是对YOLOv10中的C2f模块进行改进,MCA注意力模块通过构建了两个并行轴向注意力之间的交互,更有效地利用多尺度特征和全局上下文,在加入到C2f模块后,能够更加契合目标形态,更有效的获取目标的全局信息。

改进代码如下:

class MCARepNCSPELAN4(nn.Module):# csp-elandef __init__(self, c1, c2, c3, c4, c5=1):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = c3//2self.cv1 = Conv(c1, c3, 1, 1)self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), MCA(c4))self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), MCA(c4))self.cv4 = Conv(c3+(2*c4), c2, 1, 1)def forward(self, x):y = list(self.cv1(x).chunk(2, 1))y.extend((m(y[-1])) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))def forward_split(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))

在这里插入图片描述

注意❗:在5.2和5.3小节中需要声明的模块名称为:C2f_MCA


五、添加步骤

5.1 修改ultralytics/nn/modules/block.py

此处需要修改的文件是ultralytics/nn/modules/block.py

block.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

MCAC2f_MCA模块代码添加到此文件下。

5.2 修改ultralytics/nn/modules/init.py

此处需要修改的文件是ultralytics/nn/modules/__init__.py

__init__.py文件中定义了所有模块的初始化,我们只需要将block.py中的新的模块命添加到对应的函数即可。

MCAC2f_MCAblock.py中实现,所有要添加在from .block import

from .block import (C1,C2,...MCA,C2f_MCA
)

在这里插入图片描述

5.3 修改ultralytics/nn/modules/tasks.py

tasks.py文件中,需要在两处位置添加各模块类名称。

首先:在函数声明中引入MCAC2f_MCA

在这里插入图片描述

在这里插入图片描述

其次:在parse_model函数中注册MCAC2f_MCA模块

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以ultralytics/cfg/models/v10/yolov10m.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov10m-MCA.yaml

yolov10m.yaml中的内容复制到yolov10m-MCA.yaml文件下,修改nc数量等于自己数据中目标的数量。
在骨干网络中添加MCA模块只需要填入一个参数,通道数

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2fCIB, [1024, True]]- [-1, 1, MCA, [1024]]- [-1, 1, SPPF, [1024, 5]] # 10- [-1, 1, PSA, [1024]] # 11# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 14- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 17 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 3, C2fCIB, [512, True]] # 20 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 11], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True]] # 23 (P5/32-large)- [[17, 20, 23], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本二⭐

此处同样以ultralytics/cfg/models/v10/yolov10m.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov10m-C2f_MCA.yaml

yolov10m.yaml中的内容复制到yolov10m-C2f_MCA.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的所有C2f模块替换成C2f_MCA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 3, C2f_MCA, [128, True]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 6, C2f_MCA, [256, True]]- [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16- [-1, 6, C2f_MCA, [512, True]]- [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32- [-1, 3, C2fCIB, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 1, PSA, [1024]] # 10# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 3, C2fCIB, [512, True]] # 19 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

七、成功运行结果

分别打印网络模型可以看到MCAC2f_MCA已经加入到模型中,并可以进行训练了。

YOLOv10m-MCA

                  from  n    params  module                                       arguments                     0                  -1  1      1392  ultralytics.nn.modules.conv.Conv             [3, 48, 3, 2]                 1                  -1  1     41664  ultralytics.nn.modules.conv.Conv             [48, 96, 3, 2]                2                  -1  2    111360  ultralytics.nn.modules.block.C2f             [96, 96, 2, True]             3                  -1  1    166272  ultralytics.nn.modules.conv.Conv             [96, 192, 3, 2]               4                  -1  4    813312  ultralytics.nn.modules.block.C2f             [192, 192, 4, True]           5                  -1  1     78720  ultralytics.nn.modules.block.SCDown          [192, 384, 3, 2]              6                  -1  4   3248640  ultralytics.nn.modules.block.C2f             [384, 384, 4, True]           7                  -1  1    228672  ultralytics.nn.modules.block.SCDown          [384, 576, 3, 2]              8                  -1  2   1689984  ultralytics.nn.modules.block.C2fCIB          [576, 576, 2, True]           9                  -1  1        10  ultralytics.nn.modules.block.MCA             [576, 576]                    10                  -1  1    831168  ultralytics.nn.modules.block.SPPF            [576, 576, 5]                 11                  -1  1   1253088  ultralytics.nn.modules.block.PSA             [576, 576]                    12                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          13             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           14                  -1  2   1993728  ultralytics.nn.modules.block.C2f             [960, 384, 2]                 15                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          16             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           17                  -1  2    517632  ultralytics.nn.modules.block.C2f             [576, 192, 2]                 18                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]              19            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           20                  -1  2    831744  ultralytics.nn.modules.block.C2fCIB          [576, 384, 2, True]           21                  -1  1    152448  ultralytics.nn.modules.block.SCDown          [384, 384, 3, 2]              22            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           23                  -1  2   1911168  ultralytics.nn.modules.block.C2fCIB          [960, 576, 2, True]           24        [17, 20, 23]  1   2282134  ultralytics.nn.modules.head.v10Detect        [1, [192, 384, 576]]          
YOLOv10m-MCA summary: 511 layers, 16485296 parameters, 16485280 gradients, 64.0 GFLOPs

YOLOv10m-C2f_MCA

                   from  n    params  module                                       arguments                     0                  -1  1      1392  ultralytics.nn.modules.conv.Conv             [3, 48, 3, 2]                 1                  -1  1     41664  ultralytics.nn.modules.conv.Conv             [48, 96, 3, 2]                2                  -1  2    130206  ultralytics.nn.modules.block.C2f_MCA         [96, 96, True]                3                  -1  1    166272  ultralytics.nn.modules.conv.Conv             [96, 192, 3, 2]               4                  -1  4   1036860  ultralytics.nn.modules.block.C2f_MCA         [192, 192, True]              5                  -1  1     78720  ultralytics.nn.modules.block.SCDown          [192, 384, 3, 2]              6                  -1  4   4138052  ultralytics.nn.modules.block.C2f_MCA         [384, 384, True]              7                  -1  1    228672  ultralytics.nn.modules.block.SCDown          [384, 576, 3, 2]              8                  -1  2   1689984  ultralytics.nn.modules.block.C2fCIB          [576, 576, 2, True]           9                  -1  1    831168  ultralytics.nn.modules.block.SPPF            [576, 576, 5]                 10                  -1  1   1253088  ultralytics.nn.modules.block.PSA             [576, 576]                    11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          12             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           13                  -1  2   1993728  ultralytics.nn.modules.block.C2f             [960, 384, 2]                 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          15             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           16                  -1  2    517632  ultralytics.nn.modules.block.C2f             [576, 192, 2]                 17                  -1  1    332160  ultralytics.nn.modules.conv.Conv             [192, 192, 3, 2]              18            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           19                  -1  2    831744  ultralytics.nn.modules.block.C2fCIB          [576, 384, 2, True]           20                  -1  1    152448  ultralytics.nn.modules.block.SCDown          [384, 384, 3, 2]              21            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           22                  -1  2   1911168  ultralytics.nn.modules.block.C2fCIB          [960, 576, 2, True]           23        [16, 19, 22]  1   2282134  ultralytics.nn.modules.head.v10Detect        [1, [192, 384, 576]]          
YOLOv10m-C2f_MCA summary: 747 layers, 17617092 parameters, 17617076 gradients, 70.8 GFLOPs

http://www.ppmy.cn/embedded/125586.html

相关文章

Registry私有仓库可视化

Docker Registry 是一个用于存储和分发 Docker 镜像的服务,它支持构建私有仓库来管理组织内部的应用程序和镜像。然而,默认的 Docker Registry 并没有提供图形界面,这使得管理镜像变得不太直观。为了方便管理和查看私有仓库中的镜像&#xff…

卷积的计算——nn.Conv2d(Torch.nn里的Convolution Layers模块里的Conv2d类)

**前置知识: 1、张量和通道 张量:多维数组,用来表示数据(图像、视频等) 通道:图像数据的一部分,表示不同的颜色或特征层 通道只是张量的其中一个维度 以一张RGB图像为例, 该图像…

ffmpeg面向对象——AVInputFormat与URLProtocol啥关系

《ffmpeg面向对象-rtsp拉流相关对象》和《ffmpeg面向对象——拉流协议匹配机制探索》探索过了输入格式匹配和底层协议匹配,且ffmpeg拉流是先是匹配输入格式——抽象为AVInputFormat类,然后再匹配url协议类——抽象为URLProtocol类。 它们是啥关系&#…

RK3588开发笔记-PCIE接口2.5G网卡RTL8125调试记录

目录 前言 一、RTL8125 功能特性详解: 1. 高带宽和高效能 2. 向下兼容性 3. 硬件卸载引擎 4. 节能特性 5. VLAN与QoS支持 6. 多操作系统支持 二、硬件原理图连接 三、内核配置 四、网卡调试 总结 前言 在RK3588平台上调试2.5G网卡(Realtek RTL8125)时,我们会用…

【AI系统】AI在不同领域的应用与行业影响

本文将探讨AI在不同技术领域和行业中的广泛应用,以及这些应用如何影响和改变我们的世界。 I. 引言 AI技术正日益渗透到各个技术领域,从计算机视觉到自然语言处理,再到音频处理,AI的应用正变得越来越广泛。这些技术的发展不仅推动…

Java为啥有的地方赋值是 数据类型 变量名 = 值; 有的是 一个单词 变量名 = new 又是那个单词();

在Java中,你提到的两种赋值方式实际上反映了Java中对象和非对象(基本数据类型)之间的区别。这是Java(以及许多其他面向对象编程语言)的一个核心特性。 第一种:数据类型 变量名 值; 这种方式用于基本数据…

第五十九周周报 IAGNN

文章目录 week 59 IAGNN摘要Abstract一、大数据相关1. 磁盘扩容以及数据恢复2. 单机hbase 二、文献阅读1. 题目2. Abstract3. 网络结构3.1 问题定义3.2 IAGNN 4. 文献解读4.1 Introduction4.2 创新点4.3 实验过程4.4 实验结果 5. 结论参考文献 week 59 IAGNN 摘要 本周阅读了…

MySQL 日志 - Binlog

文章目录 binlog 的格式mysqbinlog 工具SHOW binlog events;binlog 和 redo log 对比 https://dev.mysql.com/doc/refman/8.4/en/binary-log.html binlog 全称 BinaryLog,是 MySQL 数据库中用于记录所有更改数据库状态的事件的日志文件。它主要用于以下几个目的&am…