Java基础(上)

embedded/2024/10/8 22:56:49/
Java的特性
  1. 简单易学(语法简单,上手容易);

  2. 面向对象(封装,继承,多态)

  3. 平台无关性( Java 虚拟机实现平台无关性)

  4. 支持多线程( C++ 语言没有内置的多线程机制,因此必须调用操作系统的多线程功能来进行多线程程序设计,而 Java 语言却提供了多线程支持);

  5. 可靠性(具备异常处理和自动内存管理机制);

  6. 安全性(Java 语言本身的设计就提供了多重安全防护机制如访问权限修饰符、限制程序直接访问操作系统资源);

  7. 高效性(通过 Just In Time 编译器等技术的优化,Java 语言的运行效率还是非常不错的);

  8. 支持网络编程并且很方便;

  9. 编译与解释并存;

JavaSE VS JavaEE
  • Java SE(Java Platform,Standard Edition): Java 平台标准版,Java 编程语言的基础,它包含了支持 Java 应用程序开发和运行的核心类库以及虚拟机等核心组件。Java SE 可以用于构建桌面应用程序或简单的服务器应用程序

  • Java EE(Java Platform, Enterprise Edition ):Java 平台企业版,建立在 Java SE 的基础上,包含了支持企业级应用程序开发和部署的标准和规范(比如 Servlet、JSP、EJB、JDBC、JPA、JTA、JavaMail、JMS)。 Java EE 可以用于构建分布式、可移植、健壮、可伸缩和安全的服务端 Java 应用程序,例如 Web 应用程序。

JDK、JRE、JVM之间的关系

JDK(Java Development Kit):就是一个Java的开发工具包,供开发者使用,用于创建和编译java应用程序,其中包含了JRE和一些Java的开发工具javacjavadocjava文档生成工具)、jdb(调试器)、jconsole(监控工具)、javap(反编译工具)等 JRE(Java Runtime Environment):是Java运行时所需要的环境,它内部就包含了Java的虚拟机JVM以及一些Java的基本类库(提供常用的功能API,如 I/O 操作、网络通信、数据结构等)

从Java9开始,Java就被重构为94个模块,Java 应用可以通过新增的 jlink 工具,根据不同的需求,构建不同的RunTime(运行时),而不是所有的程序都共用同一个JRE,可以节省程序运行时占用的空间

什么是字节码?采用字节码的好处是什么

在 Java 中,虚拟机JVM 可以解析的代码就叫做字节码(扩展名为 .class 的文件),它不面向任何特定的处理器,只面向虚拟机。通过字节码的方式,Java在一定程度上解决了传统解释型语言执行效率低的问题。所以, Java 程序运行时相对来说还是高效的,由于字节码并不针对一种特定的机器,因此,Java 程序无须重新编译便可在多种不同操作系统的计算机上运行,从而实现Java语言的跨平台性

在.class文件这一步,先是使用类加载器ClassLoader进行加载,再由解释器逐行进行解释执行,由于这种方法会降低运行时的效率,所以后面引进了 JIT(Just in Time Compilation) 编译器,而 JIT 属于运行时编译。当 JIT 编译器完成第一次编译后,其会将字节码对应的机器码保存下来,下次可以直接使用  

移位运算符

移位运算符是最基本的运算符之一,几乎每种编程语言都包含这一运算符。移位操作中,被操作的数据被视为二进制数,移位就是将其向左或向右移动若干位的运算。

移位运算符在各种框架以及 JDK 自身的源码中使用还是挺广泛的,HashMap(JDK1.8) 中的 hash 方法的源码就用到了移位运算符

java">static final int hash(Object key) {int h;// key.hashCode():返回散列值也就是hashcode// ^:按位异或// >>>:无符号右移,忽略符号位,空位都以0补齐return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}

使用移位运算符的主要原因

  1. 高效:移位运算符直接对应于处理器的移位指令。现代处理器具有专门的硬件指令来执行这些移位操作,这些指令通常在一个时钟周期内完成。相比之下,乘法和除法等算术运算在硬件层面上需要更多的时钟周期来完成。
  2. 节省内存:通过移位操作,可以使用一个整数(如 int 或 long)来存储多个布尔值或标志位,从而节省内存。

移位运算符最常用于快速乘以或除以 2 的幂次方。除此之外,它还在以下方面发挥着重要作用:

  • 位字段管理:例如存储和操作多个布尔值。
  • 哈希算法和加密解密:通过移位和与、或等操作来混淆数据。
  • 数据压缩:例如霍夫曼编码通过移位运算符可以快速处理和操作二进制数据,以生成紧凑的压缩格式。
  • 数据校验:例如 CRC(循环冗余校验)通过移位和多项式除法生成和校验数据完整性。。
  • 内存对齐:通过移位操作,可以轻松计算和调整数据的对齐地址。

掌握最基本的移位运算符知识还是很有必要的,这不光可以帮助我们在代码中使用,还可以帮助我们理解源码中涉及到移位运算符的代码。

Java 中有三种移位运算符:

  • << :左移运算符,向左移若干位,高位丢弃,低位补零。x << n,相当于 x 乘以 2 的 n 次方(不溢出的情况下)。
  • >> :带符号右移,向右移若干位,高位补符号位,低位丢弃。正数高位补 0,负数高位补 1。x >> n,相当于 x 除以 2 的 n 次方。
  • >>> :无符号右移,忽略符号位,空位都以 0 补齐。

虽然移位运算本质上可以分为左移和右移,但在实际应用中,右移操作需要考虑符号位的处理方式。

由于 doublefloat 在二进制中的表现比较特殊,因此不能来进行移位操作。

移位操作符实际上支持的类型只有intlong,编译器在对shortbytechar类型进行移位前,都会将其转换为int类型再操作

Java中的数据类型

Java 中有 8 种基本数据类型,分别为:

  • 6 种数字类型:
    • 4 种整数型:byteshortintlong
    • 2 种浮点型:floatdouble
  • 1 种字符类型:char
  • 1 种布尔型:boolean
基本类型位数字节默认值取值范围
byte810-128 ~ 127
short1620-32768(-2^15) ~ 32767(2^15 - 1)
int3240-2147483648 ~ 2147483647
long6480L-9223372036854775808(-2^63) ~ 9223372036854775807(2^63 -1)
char162'u0000'0 ~ 65535(2^16 - 1)
float3240f1.4E-45 ~ 3.4028235E38
double6480d4.9E-324 ~ 1.7976931348623157E308
boolean1falsetrue、false

注意:

  1. Java 里使用 long 类型的数据一定要在数值后面加上 L,否则将作为整型解析。
  2. Java 里使用 float 类型的数据一定要在数值后面加上 f 或 F,否则将无法通过编译。
  3. char a = 'h'char :单引号,String a = "hello" :双引号。

这八种基本类型都有对应的包装类分别为:ByteShortIntegerLongFloatDoubleCharacterBoolean

基本类型和包装类型的区别?
  • 用途:除了定义一些常量和局部变量之外,我们在其他地方比如方法参数、对象属性中很少会使用基本类型来定义变量。并且,包装类型可用于泛型,而基本类型不可以。
  • 存储方式:基本数据类型的局部变量存放在 Java 虚拟机栈中的局部变量表中,基本数据类型的成员变量(未被 static 修饰 )存放在 Java 虚拟机的堆中。包装类型属于对象类型,我们知道几乎所有对象实例都存在于堆中。
  • 占用空间:相比于包装类型(对象类型), 基本数据类型占用的空间往往非常小。
  • 默认值:成员变量包装类型不赋值就是 null ,而基本类型有默认值且不是 null
  • 比较方式:对于基本数据类型来说,== 比较的是值。对于包装数据类型来说,== 比较的是对象的内存地址。所有整型包装类对象之间值的比较,全部使用 equals() 方法。

注意:基本数据类型存放在栈中是一个常见的误区! 基本数据类型的存储位置取决于它们的作用域和声明方式。如果它们是局部变量,那么它们会存放在栈中;如果它们是成员变量,那么它们会存放在堆/方法区/元空间中 

什么是自动拆装箱?

  • 装箱:将基本类型用它们对应的引用类型包装起来;
  • 拆箱:将包装类型转换为基本数据类型

注意:如果频繁拆装箱的话,也会严重影响系统的性能。我们应该尽量避免不必要的拆装箱操作。 

包装类型的缓存机制

Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。

Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128,127] 的相应类型的缓存数据,Character 创建了数值在 [0,127] 范围的缓存数据,Boolean 直接返回 True or False,源码这里就不提供了,大家自行查看

 为什么浮点数运算的时候会有精度丢失的风险?

说到了数据类型,浮点类型在存储运算时会丢失一定的精度,这个和计算机保存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制精确表示

java">// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...

 如何解决浮点数运算的精度丢失问题呢?

BigDecimal 可以实现对浮点数的运算,不会造成精度丢失。通常情况下,大部分需要浮点数精确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal 来做的

java">BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("1.00");
BigDecimal c = new BigDecimal("0.8");BigDecimal x = a.subtract(c);
BigDecimal y = b.subtract(c);System.out.println(x); /* 0.2 */
System.out.println(y); /* 0.20 */
// 比较内容,不是比较值
System.out.println(Objects.equals(x, y)); /* false */
// 比较值相等用相等compareTo,相等返回0
System.out.println(0 == x.compareTo(y)); /* true */

《阿里巴巴 Java 开发手册》中提到:“为了避免精度丢失,可以使用 BigDecimal 来进行浮点数的运算”。我们在使用 BigDecimal 时,为了防止精度丢失,推荐使用它的BigDecimal(String val)构造方法或者 BigDecimal.valueOf(double val) 静态方法来创建对象,《阿里巴巴 Java 开发手册》对这部分内容也有提到,如下图所示。

 

超过 long 整型的数据应该如何表示? 

 我们都知道,在 Java 中,64 位 long 整型是最大的整数类型,基本数值类型都有一个表达范围,如果超过这个范围就会有数值溢出的风险,而在 BigInteger 内部使用 int[] 数组来存储任意大小的整形数据。相对于常规整数类型的运算来说,BigInteger 运算的效率会相对较低


http://www.ppmy.cn/embedded/124764.html

相关文章

信息学奥赛使用的编程IDE:Dev-C++ 安装指南

信息学奥赛&#xff08;NOI&#xff09;作为全国性的编程竞赛&#xff0c;要求参赛学生具备扎实的编程能力&#xff0c;而熟练使用适合的编程工具则是学习与竞赛的基础。在众多编程环境中&#xff0c;Dev-C IDE 因其简洁、轻量、支持C编程等特点&#xff0c;成为许多参赛者的常…

场景题1-设计redis的key和value的原则

在设计 Redis 的 key 和 value 时&#xff0c;遵循一些最佳实践和设计原则可以确保系统的性能、可扩展性和易维护性。以下是设计 Redis key 和 value 时的常见原则&#xff1a; 1.RedisKey的设计原则 1.1.简短有意义 1&#xff09;Redis 是内存数据库&#xff0c;key 越短&am…

39.7K Star,LobeChat,解锁高效对话体验

Hi&#xff0c;骚年&#xff0c;我是大 G&#xff0c;公众号「GitHub 指北」会推荐 GitHub 上有趣有用的项目&#xff0c;一分钟 get 一个优秀的开源项目&#xff0c;挖掘开源的价值&#xff0c;欢迎关注。 导语 在当今人工智能快速发展的时代&#xff0c;智能对话系统的需求…

Apache安装后无法启动的问题“不能再本地计算机启动apache”

首先安装 参考这位博主的小白下载和安装Apache的教程&#xff08;保姆级&#xff09; 遇到的问题 在启动的时候遇到问题 说apache不能在本地计算机启动 解决方法 1. 路径检查 首先&#xff01;&#xff01;&#xff01; 请仔细检查你的httpd.conf文件中的Apache路径是否…

sicp每日一题[2.36-2.37]

果然习惯不能停&#xff0c;就两天没学&#xff0c;昨天就忘的干干净净了。。今天把昨天的补上 Exercise 2.36 The procedure a c c u m u l a t e − n accumulate-n accumulate−n is similar to a c c u m u l a t e accumulate accumulate except that it takes as its t…

[C++]使用纯opencv部署yolov11-pose姿态估计onnx模型

【算法介绍】 使用纯OpenCV部署YOLOv11-Pose姿态估计ONNX模型是一项具有挑战性的任务&#xff0c;因为YOLOv11通常是用PyTorch等深度学习框架实现的&#xff0c;而OpenCV本身并不直接支持加载和运行PyTorch模型。然而&#xff0c;可以通过一些间接的方法来实现这一目标&#x…

掌握 C# 多线程与异步编程

现代应用程序通常需要执行复杂的计算或处理 I/O 操作&#xff0c;这些操作可能会导致主线程阻塞&#xff0c;从而降低用户体验。C# 提供了多线程与异步编程的多种工具&#xff0c;让我们能够高效地并发处理任务。本文将介绍 C# 中的多线程与异步编程&#xff0c;包括 Thread 类…

通过JS + PHP实现简易小说采集

先申明下&#xff0c;这个只是用来作为采集的一个样本&#xff0c;请大家还是尊重知识产权&#xff0c;看正版的书籍。 一、简要说明&#xff1a; 主要用到&#xff1a;jQuery, PHP 主要思路&#xff1a; 1. 通过js来循环访问本地的php文件&#xff0c;并传输书本网址&#xf…