【深度学习】(6)--图像数据增强

embedded/2024/12/23 0:34:01/

文章目录

  • 图像数据增强
    • 一、作用
    • 二、增强方法
    • 三、代码体现
    • 四、增强体现
  • 总结

图像数据增强

数据增强(Data Augmentation),也称为数据增广,是一种在机器学习和深度学习中常用的技术,它通过对现有数据进行各种变换和处理来生成新的训练样本,从而增加数据集的多样性和数量。这种方法在解决数据稀缺、提高模型泛化能力和鲁棒性方面具有重要意义。

一、作用

缓解了深度学习中数据不足的场景,在图像领域首先得到广泛使用,进而延伸到 NLP 领域,并在许多任务上取得效果。一个主要的方向是增加训练数据的多样性,从而提高模型泛化能力。

二、增强方法

图像数据增强:

  • 几何变换:如翻转、旋转、缩放、平移、裁剪等,改变图像的空间位置或尺寸。
  • 颜色变换:调整图像的亮度、对比度、饱和度等颜色属性。
  • 噪声添加:在图像中添加随机噪声,如高斯噪声、椒盐噪声等。
  • 模糊处理:使用高斯模糊、运动模糊等模糊技术处理图像。
  • 仿射变换:进行更复杂的图像变换,如透视变换等。

三、代码体现

方法

-- RandomRotation() --> 随机旋转
-- CenterCrop() --> 中心剪裁
-- RandomHorizontalFlip() --> 随机水平旋转
-- RandomVerticalFlip() --> 随机垂直旋转
-- ColorJitter() --> 颜色变换
-- RandomGrayscale() --> 转化为灰度图
-- Normalize() --> 标准化
from torchvision import transforms
"""-----创建数据集的类---数据增强-----"""
data_transforms = {'train':transforms.Compose([transforms.Resize([300,300]),transforms.RandomRotation(45), # 随机旋转,-45到45度之间随便选transforms.CenterCrop(216), # 从中心开始剪裁transforms.RandomHorizontalFlip(p=0.5),# 随机水平反转,设定一个概率transforms.RandomVerticalFlip(p=0.5),# 随机垂直反转transforms.ColorJitter(brightness=0.2,contrast=0.1,saturation=0.1,hue=0.1),# 参数1亮度,参数2对比度,参数3饱和度,参数4色相transforms.RandomGrayscale(p=0.1),# 转化为灰度图transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225]) # 标准化:均值,标准差(统一的)]),'valid':transforms.Compose([transforms.Resize([216,216]),transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]),
}

上述代码中,完全体现了当有图像传入之后,图像会进行的变化。

四、增强体现

从上述代码中,我们也能发现,上述的操作只是将传入的图像进行调整变换并没有增加训练集呀?不像是在机器学习时进行的过采样拟合数据,直观的看到100条数据拟合成了1000条数据,数据明显增多了。这里的数据增强仅仅只是将传入的图像进行调整变换,训练的数据集数量并没有动,那它是怎么将上述代码的作用体现出来从而实现数据增强的呢?

重点环节就在epochs循环中:

epochs = 50
for t in range(epochs):print(f"Epoch {t+1} \n-------------------------")train(train_dataloader,model,loss_fn,optimizer)
print("Done!")

我们在进行epochs循环时,每次都需要调用train_dataloader,我们再看看train_dataloader数据加载器是什么:

train_dataloader = DataLoader(training_data,batch_size=64,shuffle=True)

我们又发现了,train数据加载器是对training_data训练集数据的处理,那我们再看看训练集数据是什么:

training_data = food_dataset(file_path='train_labels.txt',transform=data_transforms['train'])

在这里!!我们发现transform预处理参数设置的是数据增强的代码,所以意味着,每次循环时,原始数据集都会进入到transform操作中进行变换,每次变换都是随机的,也就意味着每次循环训练时都会有大量不同的数据进行训练,从而使得神经网络训练了大量的数据集。

总结

本篇介绍了:

  1. 数据增强的方法。
  2. 数据增强是如何体现的。

注意:数据增强与过采样直接拟合大量数据不同,数据增强体现在每次循环训练数据前,都给数据进行一次随机变换,使得每次训练的数据都不一样,从而实现训练大量的数据。


http://www.ppmy.cn/embedded/120678.html

相关文章

MySQL 生产环境性能优化

在 MySQL 生产环境中进行性能优化可以从以下几个方面入手: 一、硬件层面 选择高性能服务器: 配备足够的内存,以减少磁盘 I/O。MySQL 可以将经常访问的数据缓存到内存中,提高查询速度。一般来说,对于高负载的生产环境&…

【递归】7. leetcode 404 左叶子之和

1 题目描述 题目链接:左叶子之和 2 解答思路 递归分为三步,接下来就按照这三步来思考问题 第一步:挖掘出相同的子问题 (关系到具体函数头的设计) 第二步:只关心具体子问题做了什么 (关系…

Coursera_ Algorithms I 学习笔记:Module_3_Analysis_of_Algorithm_Introduction

Coursera_ Algorithms I 学习笔记:Module_3_Analysis_of_Algorithm_Introduction scientific method applied to analysis of algorithms data analysis log-log plot doubling hypothesis experimental alogrithmics System independent effectsSystem dependen…

C++里的随机数

想用C做最基础的猜数字,肯定少不了随机数; srand(unsigned(time(NULL))); rand() //是生成一个随机数 rand()%1001//就是一个从一到一百的随机数 合体: #include <iostream> #include <cstdlib> #include <time.h> int main() { int g 0; while (g < …

高德POI数据下载详细说明

本文详细总结了如何利用地图资源下载工具&#xff08;geodatatool&#xff09;下载高德POI数据。下载POI数据相对比较复杂。加上地图资源下载工具&#xff08;geodatatool&#xff09;下载功能越来越多、越复杂&#xff01;很多时候我给网友介绍的时候也会出现纰漏&#xff01;…

P3376 【模板】网络最大流(EK算法)

贴上模版。 网络流真的很有意思&#xff0c;写最大流前必须要理解清楚增广等相关概念&#xff0c;推荐 oi wiki的讲解&#xff0c;潜心钻研一下相关证明。 EK算法大致思路&#xff1a; ①&#xff1a;在残留网络上不断找 s s s 到 t t t 的增广路&#xff0c;记路径上残留…

Stable Diffusion绘画 | 插件-Deforum:动态视频生成

Deforum 与 AnimateDiff 不太一样&#xff0c; AnimateDiff 是生成丝滑变化视频的&#xff0c;而 Deforum 的丝滑程度远远没有 AnimateDiff 好。 它是根据对比前面一帧的画面&#xff0c;然后不断生成新的相似图片&#xff0c;来组合成一个完整的视频。 Deforum 的优点在于可…

【Vue】以RuoYi框架前端为例,ElementUI封装图片上传组件——将图片信息转成base64后提交到后端保存

RuoYi 框架本身对于图片上传功能&#xff0c;在ElementUI的 <el-upload> 组件的基础装封装了 /components/ImageUpload/index.vue 组件。本组件就是在 RuoYi 自定义的 <ImageUpload> 组件的基础上进行改造&#xff0c;将图片的信息在上传之前处理成 base64 格式&am…