贪心算法练习day.1

embedded/2025/3/26 1:39:58/

理论基础

贪心算法是一种常见的解决优化问题的方法,其基本思想就是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部的最优决策,以此得到全局的最优解,例如在十张面额不同的钞票,让我们去取5张,那如何拿到最多的钱呢?那我们每次取钞票时只需要取出面额最大的一张(局部最优),最后拿到的就是最多的钱(全局最优),这就是贪心的策略

贪心算法优点和局限性:

优点:操作直接,实现简单,效率高

局限性:有时候并不能找到最优解,即无法保证能找到最优解,可能找到较差的解

贪心算法主要适用于以下两种情况

1.可以保证找到最优解:在这种情况下贪心算法是最优选择,因为它比回溯算法,动态规划更加高效

2.可以找到近似最优解:贪心算法在这种情况下也可以使用,对于很多问题而言,找到最优解很难,那么能够高效的查找到次优解也很不错

贪心算法的解决流程:

1.对问题进行分析

2.确定贪心的策略

3.证明正确性

455.分发饼干

链接:. - 力扣(LeetCode)

题目描述:

相关标签

相关企业

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 104
  • 0 <= s.length <= 3 * 104
  • 1 <= g[i], s[j] <= 231 - 1

思路:

因为饼干不能分开,因此我们不能用大饼干去喂喂口小的孩子,会造成饼干的浪费,因此我们的局部最优应该是每次找到一个大饼干,尽量去喂胃口大的孩子,全局最优就是可以喂饱最多的孩子,投喂过程如下图所示

我们需要先对孩子和饼干进行排序,便于我们找到胃口最多的小孩已经最大的饼干,因为我们的局部最优是拿最大的饼干喂胃口最大的孩子,所以只有当我们投喂成功时,才能进行下一块饼干的投喂,即如图所示,大小为9的饼干喂不了胃口为10的孩子,我们只有把大小为9的饼干喂给大小为7的孩子,才能进行下一次饼干的投喂,即大小为5的饼干

代码如下:

int cmp(int *a, int *b)
{return *a - *b;
}int findContentChildren(int* g, int gSize, int* s, int sSize) {if(gSize == 0)return 0;qsort(g, gSize,sizeof(int), cmp);qsort(s, sSize,sizeof(int), cmp);int child = 0;int index = sSize - 1;for(int i = gSize - 1; i >= 0 ; --i){while( index >= 0 && s[index] >= g[i] ){child++;index--;break;}}return child;
}

376.摆动序列

链接:. - 力扣(LeetCode)

题目描述:

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 最长子序列的长度

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

思路:

我们可以根据题目进行分析,如下图所示,有三种情况,以第一种为例,上下坡

红色所标注的就是摆动,蓝色所标注的摆动的最长子序列,即为7,根据图形我们可以看出,我们的每一个峰值都是一个摆动序列,因此我们可以将不是峰值的数值进行删除,即删除单调坡上的元素,即其中蓝色X表示标注的元素,这就是局部最优,剩下的数组元素的个数就是我们摆动的序列的最长子序列,这就是全局最优

注意:因为题目要求返回的是摆动序列的最长子序列的长度,因此我们不需要实际进行删除的操作,只需要在遇到摆动时将其记录就可以

第二种情况,上下坡带有平坡

第三种情况,单调坡有平坡

代码如下:

int wiggleMaxLength(int* nums, int numsSize){// 如果数组只有一个元素,则返回1,因为一个元素本身就构成了一个摆动序列if(numsSize == 1)return 1;// 如果数组只有两个元素且两个元素不相等,则返回2,因为两个不相等的元素构成了一个摆动序列if(numsSize == 2 && nums[0] != nums[1])return 2;int cur = 0, pre = 0;int result = 1;// 遍历数组,计算相邻元素之间的差值,根据差值的符号确定摆动序列for(int i = 0; i < numsSize - 1; i++){// 当前元素与下一个元素的差值cur = nums[i + 1] - nums[i];// 如果前一个差值为非负数且当前差值为负数,或者前一个差值为非正数且当前差值为正数,// 则说明出现了摆动,摆动序列长度加一,并更新前一个差值if((pre >= 0 && cur < 0) || (pre <= 0 && cur > 0)){result++;pre = cur;}}return result;
}

53.最大子数组和

链接:. - 力扣(LeetCode)

题目描述:

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组

是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

贪心思路:

我们在遍历数组时,需要一个变量不断去累加数组元素,如果当前的连续和是负数,,继续不断的相加只能让连续和变小,此时不如将我们新的数组元素作为连续和新的开始,因此我们就得出我们的局部最优,当求得连续和为负数,则直接抛弃它,并选择数组的下一个元素作为新的连续和起点,当我们得到连续和是正数,则进行保留,因为无论这个整数是大还是小,对数组后面的元素都只有增大的作用(遇到正数增大,遇到负数抵消部分影响),并且将这个值再进行记录,大致过程就如下所示

连续和为负数,则抛弃,连续和为正数,则进行最大连续和记录,一直遍历到数组为空

代码实现:

int maxSubArray(int* nums, int numsSize) {int result = INT_MIN;int sum = 0;for(int i = 0; i < numsSize ;i++){sum += nums[i];result = sum > result ? sum : result;sum = sum < 0 ? 0 : sum;}return result;
}


http://www.ppmy.cn/embedded/11856.html

相关文章

Debian 12.5(代号 “Bookworm“)中安装中文支持

在 Debian 12.5&#xff08;代号 "Bookworm"&#xff09;中安装中文支持通常涉及以下几个步骤&#xff1a; 1. **选择语言**&#xff1a; 在安装过程中&#xff0c;安装程序会询问您选择界面语言&#xff0c;您可以选择中文。 2. **安装中文语言包**&#xff1a…

MapReduce案例-电影网站数据统计分析

本文适合大数据初学者学习MapReduce统计分析业务问题的步骤和基础的MapReduce编程方法&#xff0c;初步掌握Hadoop对计算任务的管理。 本文末尾有全部数据集和完整代码连接。 1.准备工作 安装Hadoop:Hadoop 3.3.2 离线安装-CSDN博客 按照好Hadoop之后要检查一下datanode运行情况…

【Git教程】(十五)二分法排错 — 概述及使用要求,执行过程及其实现(用二分法人工排错或自动排错),替代解决方案 ~

Git教程 二分法排错 1️⃣ 概述2️⃣ 使用要求3️⃣ 执行过程及其实现3.1 用二分法人工排错3.2 用二分法自动排错 4️⃣ 替代解决方案 在开发过程中&#xff0c;我们经常会突然遇到一个错误&#xff0c;是之前早期版本在成功通过测试时没有出现过的。这时候&#xff0c;时下较…

web server apache tomcat11-02-setup 启动

前言 整理这个官方翻译的系列&#xff0c;原因是网上大部分的 tomcat 版本比较旧&#xff0c;此版本为 v11 最新的版本。 开源项目 从零手写实现 tomcat minicat 别称【嗅虎】心有猛虎&#xff0c;轻嗅蔷薇。 系列文章 web server apache tomcat11-01-官方文档入门介绍 web…

【C++语言】字符串String练习题

题目连接&#xff1a; 仅仅反转字母 1.仅仅反转字母 给你一个字符串 s &#xff0c;根据下述规则反转字符串&#xff1a; 所有非英文字母保留在原有位置。所有英文字母&#xff08;小写或大写&#xff09;位置反转。 返回反转后的 s 。 示例 1&#xff1a; 输入&#xff1a;s …

大型集团企业 怎么实现多区域文件交换?

很多大型集团企业&#xff0c;都会在全国各地&#xff0c;甚至海外&#xff0c;都设立分支机构&#xff0c;还有银行、邮政这类机构&#xff0c;都会在全国各地设立多个支行和网点&#xff0c;所以在日常经营过程中&#xff0c;都会存在多区域文件交换的场景。 大型集团企业在进…

齐次变换矩阵、欧拉角

目录 齐次变换矩阵旋转矩阵如何计算平移矩阵如何计算实例 欧拉角和齐次变换矩阵互相转换 齐次变换矩阵 因为老是忘记齐次变换矩阵的含义以及方向&#xff0c;每次推导公式都很费劲&#xff0c;写下这篇文章用于快速回顾齐次变换矩阵。 表示的是&#xff1a;坐标系A到坐标系B的…

线程安全的单例模式

STL是不是线程安全的? 不是&#xff0c;STL只考虑高效 智能指针是不是线程安全的&#xff1f; 大部分智能指针是安全的。智能指针 说白了 就是 指针管理。 什么是单例呢&#xff1f; 单例模式在任何时候只允许类最终定义一个对象 为什么要提一提单例呢&#xff1f; 因为…