GPIO与MIO控制LED——ZYNQ学习笔记2

embedded/2024/9/25 3:56:11/

一、GPIO简介

        ZYNQ 分为 PS 和 PL 两部分,那么器件的引脚( Pin)资源同样也分成了两部分。 ZYNQ PS 中的外设可以通过 MIO( multiplexed I/O,多路复用 I/O)模块连接到 PS 端的引脚上,也可以通过 EMIO( extended multiplexed I/O interface, 扩展多路 I/O 接口) 连接到 PL 端的引脚。 Zynq-7000 系列芯片一般有 54 个 MIO,个别芯片如 7z007s 只有 32 个。        

        GPIO 是英文“general purpose I/O”的缩写,即通用的输入/输出。它是 ZYNQ PS 中的一个外设,用于观测和控制器件引脚的状态。 图 3.1.1 是 GPIO 的框图,从中我们可以看到 GPIO 分为 4 个 Bank,其中 Bank0和 Bank1 连接到 MIO;而 Bank2 和 Bank3 连接到 EMIO。

MIO是什么:多路复用IO,为ZYNQ PS端的与一个IO外设,用于观测(Input)和控制(Output)器件的引脚状态。

bank502、500、501为PS端,bank34、34、35、13(7010无bank13)为PL端

bank502专用于连接DDR3、bank500、501为MIO接口(实际用户IO有54个)

EMIO是什么:扩展的IO 连接PL端引脚

1、当PS端引脚不够用时,可以使用EMIO来进行扩展,从而使用PL端IO;

2、当某个设配硬件已经连接到PL端,但是通过Verilog代码实现较复杂的时候,可以使用EMIO让PS来驱动

二、GPIO分组

        除 Bank1 之外的 Bank 都具有 32bit, Bank1 只具有 22bit 是因为总共只有 54 个 MIO,其中 32bit 的 Bank0控制了 MIO[0~31],剩下的 MIO[31~53]就由 22bit 的 Bank1 控制。 Bank2 和 Bank3 用于控制扩展的 MIO 即EMIO,也就是说总共可以有 32+32=64 个 EMIO。

DATA_RO 是数据只读寄存器,通过该寄存器能够观察器件引脚上的值。如果 GPIO 信号配置为输出,则通常会反映输出上驱动的值,写入此寄存器将被忽略。

DATA 是数据寄存器,该寄存器控制 GPIO 信号配置为输出时要输出的值。该寄存器的所有 32 位都是一次写入的。读取该寄存器返回写入 DATA 或 MASK_DATA_ {LSW, MSW}的先前值,它不会返回器件引脚上的当前值。

MASK_DATA_LSW 和 MASK_DATA_MSW 是数据掩码寄存器,该寄存器使软件能够有选择地一次更改所需的输出值。可以写入最多 16 位的任意组合, MASK_DATA_LSW 控制 Bank 的低 16 位, MASK_DATA_MSW 控制高 16 位。未写入的那些位保持不变并保持其先前的值。读取该寄存器返回写入DATA 或 MASK_DATA_ {LSW, MSW}的先前值;它不会返回器件引脚上的当前值。该寄存器避免了对未更改位的读-修改-写序列的需要。

DIRM 是方向模式寄存器,用于控制 I/O 引脚是用作输入还是输出。当 DIRM [x] == 0 时,输出驱动器被禁用,该引脚作为输入引脚使用。

OEN 是输出使能寄存器。将 I/O 配置为输出时,该寄存器控制是否启用输出。禁用输出时,引脚为 3态。当 OEN [x] == 0 时,输出被禁用。

 

 三、试验任务

        本章的实验任务是使用 GPIO 通过两个 MIO 引脚控制 PS 端两个 LED 的亮灭,实现底板上 PS_LED0、PS_LED1 两个 LED 灯同亮同灭的效果。

四、程序设计

1、系统框图:

2、整体设计思路: 

 3、UG585手册阅读

 按照手册提供步骤:重置、时钟步骤在建立工程初期已经完成

配置引脚:查看硬件设计:

LED挂载在MIO0、7、8引脚上,因此我们要配置这些引脚,

首先写配置方向模式寄存器,通过计算0000_0001_1000_0001 -- > 0x00000181

其次写配置输出寄存器,通过计算000_0001_1000_0001 -- > 0x00000181

最后写数据到引脚,使用带屏蔽的方式写入

        mask数据为:1111_1110_0111_1110  --> 0xfe7e

        data数据为:0000_0001_1000_0001  --> 0x0181   

        因此写入数据为:  0xfe7e0181

4、查阅寄存器地址

根据配置过程,我们要依次查阅GPIO基地址、GPIO方向控制偏移、GPIO输出使能偏移、GPIO写数据低16位偏移

#define GPIOPS_BASE_ADDRESS   	0xE000A000	//GPIO基地址
#define XGPIOPS_DIRM_OFFSET   	0X00000204	//GPIO方向控制偏移
#define XGPIOPS_OUTEN_OFFSET  	0X00000208	//GPIO输出使能偏移
#define XGPIOPS_DATA_LSW_OFFSET 0X00000000	//GPIO写数据低16位偏移
#define XGPIOPS_DATA_MSW_OFFSET 0x00000004	//GPIO写数据高16位偏移

  5、寄存器版本编写代码

#include <stdio.h>
#include "xil_io.h"
#include "sleep.h"#define GPIOPS_BASE_ADDRESS   	0xE000A000	//GPIO基地址
#define XGPIOPS_DIRM_OFFSET   	0X00000204	//GPIO方向控制偏移
#define XGPIOPS_OUTEN_OFFSET  	0X00000208	//GPIO输出使能偏移
#define XGPIOPS_DATA_LSW_OFFSET 0X00000000	//GPIO写数据低16位偏移
#define XGPIOPS_DATA_MSW_OFFSET 0x00000004	//GPIO写数据高16位偏移int main(){printf("GPIO MIO TEXT!\n");//对GPIO引脚进行配置(MIO7、8、0)//配置方向模式寄存器Xil_Out32( GPIOPS_BASE_ADDRESS + XGPIOPS_DIRM_OFFSET ,0x00000181);//配置输出使能寄存器Xil_Out32( GPIOPS_BASE_ADDRESS + XGPIOPS_OUTEN_OFFSET ,0x00000181);while(1){sleep(1);//写数据到GPIO引脚  点亮LEDXil_Out32( GPIOPS_BASE_ADDRESS + XGPIOPS_DATA_LSW_OFFSET ,0xfe7e0181);sleep(1);//写数据到GPIO引脚  熄灭LEDXil_Out32( GPIOPS_BASE_ADDRESS + XGPIOPS_DATA_LSW_OFFSET ,0xfe7e0000);}return 0;
}

6、库函数开发

 导入平台工程

五、下载验证

#include <stdio.h>
#include "xparameters.h"
#include "xgpiops.h"
#include "sleep.h"#define GPIO_DEVICE_ID		XPAR_XGPIOPS_0_DEVICE_ID#define MIO_LED1      7//MIO7
#define MIO_LED2      8//MIO8
#define MIO_LED0      0//MIO0XGpioPs Gpio;	/* The driver instance for GPIO Device. */int main(){XGpioPs_Config *ConfigPtr;//初始化GPIO驱动配置//根据器件ID来查找器件配置信息ConfigPtr = XGpioPs_LookupConfig(GPIO_DEVICE_ID);//对GPIO的驱动进行初始化XGpioPs_CfgInitialize(&Gpio, ConfigPtr,ConfigPtr->BaseAddr);//设置引脚方向XGpioPs_SetDirectionPin(&Gpio, MIO_LED1, 1);XGpioPs_SetDirectionPin(&Gpio, MIO_LED2, 1);XGpioPs_SetDirectionPin(&Gpio, MIO_LED0, 1);//设置输出使能   0:输入    1:输出XGpioPs_SetOutputEnablePin(&Gpio, MIO_LED1, 1);XGpioPs_SetOutputEnablePin(&Gpio, MIO_LED2, 1);XGpioPs_SetOutputEnablePin(&Gpio, MIO_LED0, 1);while(1){//往GPIO写高电平      点亮LED1XGpioPs_WritePin(&Gpio, MIO_LED1, 0x1);XGpioPs_WritePin(&Gpio, MIO_LED2, 0x1);XGpioPs_WritePin(&Gpio, MIO_LED0, 0x1);sleep(1);//往GPIO写低电平      熄灭LED1XGpioPs_WritePin(&Gpio, MIO_LED1, 0x0);XGpioPs_WritePin(&Gpio, MIO_LED2, 0x0);XGpioPs_WritePin(&Gpio, MIO_LED0, 0x0);sleep(1);}printf("GPIO MIO TEXT!\n");return 0 ;
}

六、总结

 


http://www.ppmy.cn/embedded/116429.html

相关文章

Invalid Executable The executable contains bitcode

Invalid Executable The executable contains bitcode xcode世界xcode16后&#xff0c;打包上传testflight时三方库报错&#xff1a;Invalid Executable - The executable ***.app/Frameworks/xxx.framework/xxx contains bitcode. 解决方案&#xff1a; 执行一下指令删除该f…

江科大51单片机

文章目录 led灯led点亮led闪烁流水灯 独立按键按键点灯按键消抖按键实现二进制流水灯按键实现流水灯 数码管静态数码管显示动态数码管显示 矩阵键盘定时器/中断串口通信led点阵屏DS1302实时时钟蜂鸣器AT24C02DS18B20LCD1602直流电机驱动AD/DA红外遥控 led灯 创建项目&#xff…

《华为交换机堆叠配置》

目录 1. 扩展端口数量: 2. 提高可靠性: 3. 简化管理: 4. 实现负载均衡: 5.华为交换机堆叠通常有两种方式: 6.下面举例介绍一下华为交换机堆叠的详细配置步骤。 华为交换机堆叠是一种将多台华为交换机组合在一起,形成一个逻辑上统一的交换机设备的技术。通过堆叠,可以…

面试速通宝典——3

51. 野指针和内存泄漏是什么&#xff1f;如何避免&#xff1f; ‌‌‌‌  内存泄漏&#xff1a;是指程序中以动态分配的堆内存由于某种原因程序未释放或无法释放&#xff0c;造成系统内存的浪费&#xff0c;导致程序运行速度减慢甚至系统崩溃等严重后果。 ‌‌‌‌  避免&…

Vue 中 watch 的使用方法及注意事项

前言 Vue 的 Watch 是一个非常有用的功能&#xff0c;它能够监听 Vue 实例数据的变化并执行相应的操作。本篇文章将详细介绍 Vue Watch 的使用方法和注意事项&#xff0c;让你能够充分利用 Watch 来解决 Vue 开发中的各种问题。 1. Watch 是什么&#xff1f; 1.1 Watch 的作…

微计算机断层扫描Micro-CT的作用与局限

正确认识微计算机断层扫描Micro-CT的作用与局限 微计算机断层扫描&#xff08;Micro-Computed Tomography&#xff0c;micro-CT&#xff09;是一种用于成像微观结构的断层扫描技术&#xff0c;它在材料科学、生物学、医学等领域具有广泛的应用。 一、基本原理 1. 数据采集&…

《程序猿之设计模式实战 · 适配器模式》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

使用Docker和cpolar在Linux服务器上搭建DashDot监控面板

使用Docker和cpolar在Linux服务器上搭建DashDot监控面板 前言环境准备安装Docker下载Dashdot镜像 部署DashDot应用本地访问DashDot服务安装cpolar内网穿透固定DashDot公网地址结语 前言 在这个数字化飞速发展的时代&#xff0c;服务器作为支撑各种应用和服务的基础设施&#xf…